Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 251))

  • 1807 Accesses

Abstract

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a naturally occurring hydroxystilbene, is considered as an essential anti-oxidative and possessing chemopreventive properties, and is found in various medical plants. It has been proven that resveratrol is a Sirt1 activator and kinds of biological activities. In this paper, we designed and synthesized a series of resveratrol derivatives through a five-step synthetic procedure. Total 11 resveratrol derivatives were prepared from two kinds of hydroxybenzoic acid by methylation and reduction followed by bromination and reaction with triethyl phosphate to get methoxylated diethyl benzylphosphonates, then condensation with a series of aromatic aldehydes by Wittig-Horner reaction to offer the desired compounds in overall yield of about 17.2–48.5 %. These synthesized compounds were characterized on the basis of 1H NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richard JL (1987) Coronary risk factors: The French paradox. Arch Mal Coeur Vaiss 80:17–21

    Google Scholar 

  2. Takaoka MJ (1940) Of the phenolic substances of white hellebore. J Faculty Sci 3:1–16

    CAS  Google Scholar 

  3. Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol 138:619–620

    Article  CAS  Google Scholar 

  4. Jang M, Pezzuto JM (1999) Cancer chemopreventive activity of resveratrol. Drugs Exp Clin Res 25:65–771

    CAS  Google Scholar 

  5. Stivala LA, Savio M, Carafoli F et al (2001) Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 276:22586–22594

    Article  CAS  Google Scholar 

  6. Daroch F, Hoeneisen M, Gonzalez CL et al (2001) In vitro antibacterial activity of Chilean red wines against Helicobacter pylori. Microbios 104:79–85

    CAS  Google Scholar 

  7. Wang WB, Lai HC, Hsueh PR et al (2006) Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J Med Microbiol 55:1313–1321

    Article  CAS  Google Scholar 

  8. Zaidi SF, Ahmed K, Yamamoto T et al (2009) Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells. Biol Pharm Bull 32:1931–1935

    Article  CAS  Google Scholar 

  9. Arichi H, Kimura Y, Okuda H et al (1982) Effects of stilbene components of the roots of Polygonum cuspidatum on lipid metabolism. Chem Pharm Bull (Tokyo) 30:1766–1770

    Article  CAS  Google Scholar 

  10. Pace-Asciak CR, Hahn S, Diamandis EP et al (1996) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  Google Scholar 

  11. Chen CK, Pace-Asciak CR (1996) Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 27:363–366

    Google Scholar 

  12. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  Google Scholar 

  13. Wang RH, Sengupta K, Li C et al (2008) Impaired DNA damage response, genome instability, and Tumorigenesis in SIRT1 mutant mice. Cancer Cell 14:312–323

    Article  CAS  Google Scholar 

  14. Rocha-Gonzalez HI, Ambriz-Tututi M, Granados-Soto V (2008) Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 14:234–247

    Article  CAS  Google Scholar 

  15. Vieira de Almeida LM, Pineiro CC, Leite Marina MC et al (2008) Protective effects of resveratrol on hydrogen peroxide induced toxicity in primary cortical astrocyte cultures. Neurochem Res 33:8–15

    Article  Google Scholar 

  16. Ali HA, Kondo K, Tsuda Y (1992) Synthesis and nematocidal activity of hydroxystilbenes. Chem Pharm Bull 40:1130–1136

    Article  CAS  Google Scholar 

  17. Thakkar K, Geahlen RL, Gushman M (1993) Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogs of piceatannol. J Med Chem 36:2950–2955

    Article  CAS  Google Scholar 

  18. Murias M, Handler N, Erker T et al (2004) Resveratrol analogues as selectivecyclooxygenase-2 inhibitors: synthesis and structure—activity relationship. Bioorg Med Chem 12:5571–5578

    Article  CAS  Google Scholar 

  19. Bhattacharya Alok K, Thyagarajan G (1981) Michaelis-Arbuzov rearrangement. Chem Rev 81:415–430

    Article  Google Scholar 

  20. Cristau HJ, Darviche F, Torreilles E (1998) Mechanistic investigations of the formation of TTF derivatives via the phosphonate way. Tetrahedron Lett 39:2103–2106

    Article  CAS  Google Scholar 

  21. Yang YT, Weng CJ, Ho CT et al (2009) Resveratrol analog-3,5,4′-trimethoxy-trans-stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol Nutr Food Res 53:407–416

    Article  CAS  Google Scholar 

  22. Sun B, Hoshino J, Jermihov K et al (2010) Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer. Bioorg Med Chem 18:5352–5366

    Article  CAS  Google Scholar 

  23. Park EJ, Min HY, Park HJ et al (2011) Nuclear factor E2-related factor 2-mediated induction of NAD(P)H:quinone oxidoreductase 1 by 3,5-dimethoxy-trans- stilbene. J Pharmacol Sci 116:89–96

    Article  CAS  Google Scholar 

  24. Park EJ, Min HY, Ahn YH et al (2004) Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E2 production in lipopolysaccharide-induced mouse macrophage cells. Bioorg Med Chem Letters 14:5895–5898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No: 81072521) and Tianjin University of Science & Technology (No: 20100411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erbing Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Hu, F., Gao, Y., Ji, N., Liu, W., Hua, E. (2014). Design and Synthesis of Resveratrol Analogs. In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37925-3_146

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37925-3_146

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37924-6

  • Online ISBN: 978-3-642-37925-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics