Skip to main content

Lichen: A Potential Anticancer Officinal Resource

  • Conference paper
  • First Online:
  • 1782 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 250))

Abstract

Many natural products, which derived from plants, animals, and microorganisms, have been isolated as bioactive compounds with great therapeutic potential for cancer, but as a fungus, lichen has long been neglected in this area. The special symbiotic form of fungi and algae and worldwide distribution even extreme habitat of lichen contribute to its biological and chemical diversity, so, lichen becomes an amazing resource for the discovery of new anticancer drugs. The aim of this review is to show the value of lichen as a potential resource of anticancer drugs, especially highlight several lichen metabolisms and their derivatives, which can show the potentials to inhibit cellular proliferation or cytotoxicity and trigger apoptosis of cancer cells. To identify the new lead-compounds from lichen and elucidate the active principles with therapeutic potential for cancer, it is essential to establish a high-throughput screening program and dedicated collaboration among lichenologists, chemists, pharmacologists, and biologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Micheli A, Mugnol E, Krogh V et al, the Europreval Working Group (2002) Cancer prevalence in European reistry areas. Ann Oncol 13:840−865

    Google Scholar 

  2. Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  Google Scholar 

  3. Sun YY, Xun KL, Wang YT et al (2009) A systematic review of the anticancer properties of berberine a natural product from Chinese herbs. Anti-Canc D 20:757–769

    Article  CAS  Google Scholar 

  4. Sánchez C, Zhu LL, Braña AF et al (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. PANS 102:461–466

    Article  Google Scholar 

  5. Nash TH (1996) Lichen biology. Cambridge: Cambridge University Press 1–7

    Google Scholar 

  6. Guschina IA, Dobson G, Harwood JL (2003) Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochem 64:209–217

    Article  CAS  Google Scholar 

  7. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  8. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  9. DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986−2001. Annu Rev Microbiol 58:273–301

    Article  CAS  Google Scholar 

  10. Nash TH (2008) Lichen biology, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  11. Stocker-Wörgötter E (2008) Metabolic diversity of lichen forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    Article  Google Scholar 

  12. Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  Google Scholar 

  13. Bézivin C, Tomasi S, Lohézic-Le Dévéhat F, Boustie J (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomed 10:499–503

    Article  Google Scholar 

  14. Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Curr Biol 2:575–579

    CAS  Google Scholar 

  15. Lauterwein M, Oethinger M, Belsner K et al (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (–)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543

    Article  CAS  Google Scholar 

  16. Honda NK, Pavan FR, Coelho RG et al (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17:328–332

    Article  CAS  Google Scholar 

  17. Fazio AT, Adler MT, Bertoni MD et al (2007) Lichen secondary metabolites from the cultured lichen mycobionts of teloschistes chrysophthalmus and ramalina celastri and their antiviral activities. Z Naturforsch C 62:4360–4365

    Google Scholar 

  18. Neanati N, Hong HX, Mazumder A et al (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40:942–952

    Article  Google Scholar 

  19. Ren MR, Hur JS, Seo KI et al (2009) Anti-proliferative effects of Lethariella zahlbruckneri extracts in HT-29 human colon cancer cells. Food Chem T47:2157–2162

    Google Scholar 

  20. Mitrović T, Stamenković S, Marković S et al (2011) Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci 12:5428–5448

    Article  Google Scholar 

  21. Mitrović T, Stamenković S, S.tojičić D et al (2011) Lichen as source of versatile bioactive compounds. Biolog Nys-san 2:1−6

    Google Scholar 

  22. Zambare VP, Christopher LP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50:778–798

    Article  Google Scholar 

  23. Wei JC, Wang XY, Hou JL et al (1982) Lichenes officinales sinenses. Science Press, Beijing

    Google Scholar 

  24. Bastien JW (1983) Pharmacopoeia of the qollahuaya andeans. J Ethnopharmacol 8:97–111

    Article  CAS  Google Scholar 

  25. Wang LS, Takao N, William LC et al (2001) Ethnic uses of lichens in Yunnan, China. Bryologist 104:345–349

    Article  Google Scholar 

  26. Lokar LC, Poldini L (1998) Herbal remedise in the traditional medicine of the Venezia Giulia Region (north east Italy). J Ethnophar 22:231–178

    Article  Google Scholar 

  27. Podterob AP (2008) Chemmical composition of lichen and their medical applications. Pharm Chem J 42:32–38

    Article  Google Scholar 

  28. Vartia KO (1973) Antibiotics in lichens. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York 547–569

    Google Scholar 

  29. Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307

    Article  CAS  Google Scholar 

  30. Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    Article  Google Scholar 

  31. Triggiani1 D, Ceccarelli1 D, Loppi S et al (2009) Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 64:59−62

    Google Scholar 

  32. Bézinvin C, Tomasi S, Boustie J et al (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomed 10:499–503

    Article  Google Scholar 

  33. Perry NB, Benn MH, Tangney RS et al (1999) Antimicrobial, antiviral and cytotoxic activikty of New Zealand lichens. Lichenologi 31:627–636

    Google Scholar 

  34. Ranković BR, Kosanić MM, Stanjkvić TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. CAM 11:97–104

    Google Scholar 

  35. Kupchan M, Kopperman HL (1975) Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625

    Article  CAS  Google Scholar 

  36. Bazin MA, Le Lamer AC, Delcros JG (2008) Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg Med Chem 16:8737–8744

    Article  Google Scholar 

  37. O’Neill MA, Mayer M, Appleyard VCL et al (2010) Does usnic acid affect microtubules in human cancer cells? Braz. J. Biol 70:659–664

    Article  Google Scholar 

  38. Olafsdottir ES, Lngólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:199–208

    Article  CAS  Google Scholar 

  39. Whistler RL, Bushway AA, Singh PP (1976) Noncytotoxic, antitumour polysaccharides. Adv Carbohydr Chem Biochem 32:235–275

    Article  CAS  Google Scholar 

  40. Chihara G, Hamuro J, Maeda YY (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from lentinus edodes (berk.) sing. (an edible mushroom). Cancer Res 30:2776–2781

    CAS  Google Scholar 

  41. Correche E, Carrasco M, Enriz D et al (2002) Cytotoxic screening activity of secondary lichen metabolites. Acta Farm Bonaerense 4:273–278

    Google Scholar 

  42. Russo A, Piovano M, Lombardo L (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU145 cells. Anti-canc D17:1163–1169

    Article  Google Scholar 

  43. Ogmundsdottir HM, Zoega GM, Gissurarson SR (1998) Anti-proliferative effects of lichen-derived inhibitors of 5- lipoxygenase on malignant cell-lines and mitogenstimulated Lymphocytes. J Pharm Pharmacol 50:107–115

    Article  CAS  Google Scholar 

  44. Haralsdottir S, Guolaugsdottir E, Ogmundsdóttir HM et al (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med 70:1098–1110

    Article  Google Scholar 

  45. Gissurarson SR, Sigurdsson SB, Ingólfsdóttir K et al (1997) Effect of lobaric acid on cysteinyl- leukotriene formation and contractile activity of guinea pig taenia coli. J Pharmacol Exp Ther 280:770–773

    CAS  Google Scholar 

  46. Millot M, Tomasi S, Boustie J et al (2009) Cytotoxic constituents of the lichen Diploicia canescens. J Nat Prod 72:2177–2180

    Article  CAS  Google Scholar 

  47. Ernst-Russell MA, Elix JA, Nash IIITH et al (1999) Hybocarpone, a novel cytotoxicity naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedr L 40:6321–6324

    Article  CAS  Google Scholar 

  48. Roullier C, Chollet-Krugler M, Boustie J et al (2010) A novel aryl-hydrazide from the marine lichen Lichina pygmaea: isolation, synthesis of derivatives and cytotoxicity assays. Bioorg Med 20:4582–4586

    Article  CAS  Google Scholar 

  49. Liu YQ, Hu XY, Lou HX et al (2012) Rentigeric acid B exhibits antitumor activity through suppression of nuclear factor-kB signaling in Prostate cancer cells in vitro and in vivo. PLoS ONE 7:1–11

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Foundation for Ph.D, Southwest Forestry University and the Youth Innovation Promotion Association, Chinese Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meirong Ren or Xinli Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, M., Wei, X., Xu, F. (2014). Lichen: A Potential Anticancer Officinal Resource. In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37922-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37922-2_80

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37921-5

  • Online ISBN: 978-3-642-37922-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics