Information Fusion: Popular Approaches and Applications

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 214)


Information fusion is a hot topic in computer and related fields. It is widely used in military and civilian areas. In this paper, we first describe information fusion architectures of it to give a blueprint of information fusion approaches. Second, we review the most popular information fusion methods and analyze their advantages and disadvantages. Third, we outline their significant applications. Finally, conclusion remarks are drawn and some future prospects are given.


Information fusion Architectures Approaches Applications 


  1. 1.
    Durrant-Whyte H (2001) Multi sensor data fusion, Springer handbook of robotics. Springer, HeidelbergGoogle Scholar
  2. 2.
    Hall DL, Llinas J (1994) A challenge for the data fusion community I: research imperatives for improved processing. In: Proceedings of 7th national symposium on sensor fusion, AlbuquerqueGoogle Scholar
  3. 3.
    Llinas J, Hall DL (1994) A challenge for the data fusion community II: infrastructure imperatives In Proceedings of the 7th national symposium on sensor fusion, AlbuquerqueGoogle Scholar
  4. 4.
    Jo K, Chu K, Sunwoo M (2012) Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning. IEEE Trans Intell Transp Syst 13(1):329–343Google Scholar
  5. 5.
    Gelfaud J (1992) Selective guide to literature on artificial intelligence and expert systems. In: American society for engineering educationGoogle Scholar
  6. 6.
    Hall DL, Llinas J (1997) An introduction to multi-sensor data fusion. Proc IEE 85(1):6-23Google Scholar
  7. 7.
    Shulsky A (1993) Silent warfare: understanding the world of intelligence. Brassey’s, Washington, D.CGoogle Scholar
  8. 8.
    White F (1998) A model for data fusion. In: Proceedings of the 1st international symposium on sensor fusionGoogle Scholar
  9. 9.
    Steinberg A, Bowman C, White F (1999) Revisions to the JDL data fusion model. SPIE 3719:430–441CrossRefGoogle Scholar
  10. 10.
    Boyd J (1987) A discourse on winning and losing. Maxell AFB letureGoogle Scholar
  11. 11.
    Bedworth M, O’Brien J (2000) The omnibus model: a new model of data fusion? Proc IEEE AES Syst Magzine 15(4):30–36Google Scholar
  12. 12.
    Shahabzian E, Blodgett D, Labbe P (2001) The extended OODA model for data fusion systems. Fusion’2001, pp FrB1-19–25Google Scholar
  13. 13.
    El Faouzi N-E, Leung H, Kurian A (2011) Data fusion in intelligent transportation systems: progress and challenges—a survey. Inf Fusion 12:4–10CrossRefGoogle Scholar
  14. 14.
    Plooij JM, Maal TJJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Berge SJ (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review, Int J Oral maxillofac surg 40(4):341–352Google Scholar
  15. 15.
    Bertolazzi E, Biral F, Da Lio M, Saroldi A, Tango F (2010) Supporting drivers in keeping safe speed and safe distance: the SASPENCE subproject within the European framework programme 6 integrating project PReVENT. IEEE Trans Intell Transp Syst 11(3):525–538CrossRefGoogle Scholar
  16. 16.
    Smith D, Singh S (2006) Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans Knowl Data Eng 18(12):1696–1710Google Scholar
  17. 17.
    Salerno J, Hinman M, Boulware D (2004) Building a framework for situational awareness. Proceedings of seventh international conference information fusion, pp 219–226Google Scholar
  18. 18.
    US Department of Defense (1991) Data fusion subpanel of the joint directors of laboratories, technical panel for C3. Data fusion lexiconGoogle Scholar
  19. 19.
    Pohl C, Van Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote sens 19(5):823–854CrossRefGoogle Scholar
  20. 20.
    Harrison BA, Jupp DLB (1990) MicroBRIAN resource manual: introduction to image processing. Division of Water Resources, CSIRO, AustraliaGoogle Scholar
  21. 21.
    Kiiveri H, Caccetta P (1998) Image fusion with conditional probability networks for monitoring the salinization of farmland. Digit Signal Process 8:225–230CrossRefGoogle Scholar
  22. 22.
    Mao L, Du J, Liu H, Guo D, Tang X, Wei N (2010) Two-stage target locating algorithm in three dimensional WSNs under typical deployment schemes. Wireless Algorithms Syst Appl 6221:172–181Google Scholar
  23. 23.
    Veitch D, Augustin B, Teixeira R, Friedman T (2009) Failure control in multipath route tracing. IEEE, pp 1395–1403Google Scholar
  24. 24.
    Jazayeri A, Cai H (2011) Vehicle detection and tracking in car video based on motion model. IEEE Trans Intell Transp Syst 12(2):583–595Google Scholar
  25. 25.
    Dembczy K, Cheng W, Hullermeier E (2010) Bayes optimal multilabel classification via probabilistic classifier chains. Proceedings of the 27th international conference on machine learning, HaifaGoogle Scholar
  26. 26.
    Yilmaz Isik (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836CrossRefGoogle Scholar
  27. 27.
    Zhang G, Jia X (2012) Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification. IEEE Geosci Remote Sens lett 9(5):856–860Google Scholar
  28. 28.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, HeidelbergGoogle Scholar
  29. 29.
    Liu L, Yager RR (2008) Classic works of the Dempster-Shafer theory of belief functions: an introduction. Stud fuzziness soft comput 219:1–34Google Scholar
  30. 30.
    Sentz K, Ferson S (2002) Combination of evidence in Dempster-Shafer theory. SAND2002-0835 Technical report, Sandia National LaboratoriesGoogle Scholar
  31. 31.
    Zadeh L (1986) A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. Al Mag 7(2):85–90Google Scholar
  32. 32.
    Wang P (1994) A defect in Dempster-Shafer theory .In: Proceedings of the 10th conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo, pp 560–566Google Scholar
  33. 33.
    Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems. International symposium aerospace/defense sensing, simulation, and controls 3Google Scholar
  34. 34.
    Bucy RS, Joseph PD (2005) Filtering for stochastic processes with applications to guidance. Wiley, 1968; 2nd Edn. AMS Chelsea Publication, New York, ISBN 0-8218-3782-6Google Scholar
  35. 35.
    Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York. ISBN 0-12-381550-9MATHGoogle Scholar
  36. 36.
    Kobayashi T, Simon DL (2006) Hybrid Kalman filter approach for aircraft engine in-flight diagnostics: sensor fault detection case. NASA/TM—2006-214418Google Scholar
  37. 37.
    Einhorn E, Schr¨oter C, B¨ohme HJ, Gross HM (2007) A hybrid Kalman filter based algorithm for real-time visual obstacle detection. In: Proceedings of the 3rd ECMR, 2007, pp 156–161Google Scholar
  38. 38.
    Doucet A, De Freitas N, Gordon NJ (2001) Sequential Monte Carlo methods in practice. Springer, New YorkGoogle Scholar
  39. 39.
    Carpenter J, Clifford P, Fearnhead P (1999) Improved particle filter for non-linear problems. IEE Proc Radar Sonar Navig 146(1):2–7Google Scholar
  40. 40.
    Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to non-linear/non-Gaussian Bayesian state estimation,” IEE Proc F Radar Signal Process 140(2):107–113Google Scholar
  41. 41.
    Hue C, Le Cadre JP (2002) Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Trans Signal Process 50(2):309–325Google Scholar
  42. 42.
    Veres GV, Norton JP (2001) Improved particle filter for multitarget-multisensor tracking with unresolved applications. IEE Target Tracking Algorithms Appl 1:12/1–12/5Google Scholar
  43. 43.
    McGinnity S, Irwin GW (2000) Multiple model bootstrap filter for manoeuvring target tracking. IEEE Trans Aerosp Electron Syst 36(3):1006–1012Google Scholar
  44. 44.
    Blom HAP, Bloem EA (2003) Tracking multiple manoeuvring targets by joint combinations of IMM and PDA. Proceedings of 42nd IEEE Conference Decision and ControlGoogle Scholar
  45. 45.
    Liu G, Worgotter F, Markelic I (2010) Combining statistical Hough transform and particle filter for robust lane detection and tracking. In: 2010 IEEE intelligent vehicles symposium, WeF1.3, pp 993–997Google Scholar
  46. 46.
    Loose H, Stiller C (2009) Kalman Particle Filter for Lane Recognition on Rural Roads. Proceedings of IEEE intelligent vehicle symposium, pp 60–66Google Scholar
  47. 47.
    Blom HAP, Bloem EA (2003) Joint IMMPDA particle filter. In: Proceedings of sixth international conference information fusion, vol 2, pp 785–792Google Scholar
  48. 48.
    Liu J, Chu M , Liu J, Reich J, Zhao F (2004) Distributed state representation for tracking problems in sensor networks. In: Proceeding third international symposium information processing in sensor networks, pp 234–242Google Scholar
  49. 49.
    Hopfield J (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79(8):2554–2558Google Scholar
  50. 50.
    Rumelhart DE, Hinton FE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(9):533–536CrossRefGoogle Scholar
  51. 51.
    Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. MIT Press, CambridgeGoogle Scholar
  52. 52.
    Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, CambridgeGoogle Scholar
  53. 53.
    Auffarth B (2010) Clustering by a genetic algorithm with biased mutation operator. WCCI CEC. IEEE, 18–23 July 2010Google Scholar
  54. 54.
    Davarynejad M, Ahn CW, Vrancken J, van den Berg J, Coello Coello CA (2010) Evolutionary hidden information detection by granulation-based fitness approximation. Appl Soft Comput 10(3):719–729CrossRefGoogle Scholar
  55. 55.
    Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173CrossRefGoogle Scholar
  56. 56.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Zadeh LA et al (1996) Fuzzy sets, fuzzy logic, fuzzy systems. World Scientific Press, ISBN 981-02-2421-4Google Scholar
  58. 58.
    Dubois D, Prade H (2004) On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst 142:143–161MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition—part I. IEEE Trans Syst Man Cybern B Cybern 29(6):778–785CrossRefGoogle Scholar
  60. 60.
    Garcia J, Patricio MA, Berlanga A, Molina JM (2011) Fuzzy region assignment for visual tracking. Soft Comput 15:1845–1864CrossRefGoogle Scholar
  61. 61.
    Chow MY, Tram H (1996) Application of fuzzy logic technology for spatial load forecasting. In: IEEE, pp 608–614Google Scholar
  62. 62.
    Herrera F, Herrera-Viedma E, Mart L (2000) A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets Syst 114:43–58Google Scholar
  63. 63.
    Hall DL, Linn RJ (1991) Survey of commercial software for multisensor data fusion. In: Proceedings of SPIE conference sensor fusion and aerospace applications, OrlandoGoogle Scholar
  64. 64.
    Kessler H et al (1992) Functional description of the data fusion process, Technical report, Office of Naval Technology, Naval Air Development Center, WarminsterGoogle Scholar
  65. 65.
    Wright F (1980) The fusion of multi-source data Signal, pp 39–43Google Scholar
  66. 66.
    Valet L, Mauris G (2000) A statistical overview of recent literature in information fusion. In: ISIF, MoC3, pp 22–29Google Scholar
  67. 67.
    Hall DL, Linn RJ Llinas J (1991) A survey of data fusion systems. In: Proceedings of SPIE conference on data structure and target classification, vol. 1470, pp 13–36Google Scholar
  68. 68.
    Solaiman B, Pierce LE, Ulaby FT (1999) Multisensor data fusion using fuzzy concepts: application to land-cover classification using ers-l/jers-1 sar composites. IEEE Trans Geosci Remote sens 37(3):1316–1325 (special issue on data fusion)CrossRefGoogle Scholar
  69. 69.
    Nejatali A, Ciric IR (1998) Novel image fusion methodology using fuzzy set theory. Opt Eng 37(2):485–491CrossRefGoogle Scholar
  70. 70.
    Collinet C, Sto¨ter M, Bradshaw CR, Samusik N, Rink JC, Kenski D, Habermann B, Buchholz F, Henschel R, Mueller MS, Nag WE, Fava E, Kalaidzidis Y, Zerial M (2010) Systems survey of endocytosis by multiparametric image analysis. Nature 464(11):243–250Google Scholar
  71. 71.
    Molinaria F, Zengb G, Suric JS (2010) A state of the art review on intima–media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput methods programs biomed 100:201–221Google Scholar
  72. 72.
    Fisher LS, Ward A, Milligan RA, Unwin N, Potter CS, Carragher B (2011) A helical processing pipeline for EM structure determination of membrane proteins. Methods 55:350–362CrossRefGoogle Scholar
  73. 73.
    Zaidi H, Montandon ML, Alavi A (2008) The clinical role of fusion imaging using PET, CT, and MR imaging. PET Clinics 2008, vol 3, no. 3, pp 275–291Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer ScienceTsinghua UniversityBeijingChina
  2. 2.Department of BasicDalian Naval AcademyDalianChina

Personalised recommendations