Lee’s Theorem Extension for \(\mathcal{IVFR}s\) Similarities

  • Garmendia Luis
  • Gonzalez del Campo Ramon
  • Lopez Victoria
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 214)

Abstract

In this paper an extension of Lee’s theorem for interval-valued fuzzy relations is given. An algorithm to compute an \(\mathcal{IV }\)-similarity decomposition is given.

Keywords

Interval-valued fuzzy relations \(\mathcal{IV }\)-similarity Bridge between two \(\mathcal{IV }\)-similarities 

Notes

Acknowledgments

This research is partially supported by the Spanish Ministry of Science and Technology, grant number TIN2009-07901, the Research Group CAM GR35/10-A at Complutense University of Madrid.

References

  1. 1.
    Bilgic T (1998) Interval-valued preference structures. Eur J Oper Res 105(1):162–183Google Scholar
  2. 2.
    Bustince H, Barrenechea E, Pagola M, Orduna R (2007) Image thresholding computation using Atanassov’s intuitionistic fuzzy sets. JACIII 11:187–194Google Scholar
  3. 3.
    Bustince H, Burillo P (2000) Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning. Fuzzy Sets Syst 113:205–219MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bustince H, Burillo P (2000) Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning. Fuzzy Sets Syst 113(2):205–219MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bustince H, Mohedano V, Barrenechea E, Pagola M (2006) An algorithm for calculating the threshold of an image representing uncertainty through a-ifss. In: Proceedings of 11th information processing and management of uncertainty in knowledge-based systems, pp 2383–2390Google Scholar
  6. 6.
    Cornelis C, Deschrijver G, Kerre E (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reason 35(1):55–95MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cornelis C, Deschrijver G, Kerre E (2006) Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets and Syst 157(5):622–627MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deschrijver G, Kerre EE (2003) On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst 136(3):333–361MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dziech A, Gorzalczany MB (August 1987) Decision making in signal transmission problems with interval-valued fuzzy sets. Fuzzy Sets Syst 23:191–203MathSciNetCrossRefGoogle Scholar
  10. 10.
    González-del Campo R, Garmendia L, Recasens J (2009) Transitive closure of interval-valued relations. In: Proceedings IFSA-EUSFLAT’09, pp 837–842Google Scholar
  11. 11.
    Gorzalczany MB (1988) Interval-valued fuzzy controller based on verbal model of object. Fuzzy Sets Syst 28:45–53MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grattan-Guiness I (1975) Fuzzy membership mapped onto interval and many-valued quantities. Math Logik Grundladen Math 22:149–160CrossRefGoogle Scholar
  13. 13.
    Jahn KU (1975) Intervall-wertige mengen. Math Nach 68:115–132MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lee H (2001) An optimal algorithm for computing the max-min transitive closure of a fuzzy similarity matrix. Fuzzy Sets and Syst 123(1):129–136CrossRefMATHGoogle Scholar
  15. 15.
    Pankowska A, Wygralak M (2004) On hesitation degrees in if-set theory. In: ICAISC, pp 338–343Google Scholar
  16. 16.
    Pankowska A, Wygralak M (2006) General if-sets with triangular norms and their applications to group decision making. Inf Sci 176(18):2713–2754MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Roy MK, Biswas R (1992) I-v fuzzy relations and sanchez’s approach for medical diagnosis. Fuzzy Sets Syst 47:35–38MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sanchez E, Sambuc R (1976) Fuzzy relationships. phi-fuzzy functions. application to diagnostic aid in thyroid pathology. In: Proceedings of an international symposium on medical data processing, pp 513–524Google Scholar
  19. 19.
    Szmidt E, Kacprzyk J ( 1998) Group decision making under intuitionistic fuzzy preference relations. In: Proceedings of information processing and management of uncertainty in knowledge-based systems, IPMU, pp 172–178Google Scholar
  20. 20.
    Tizhoosh HR (2005) Image thresholding using type-2 fuzzy sets. Pattern Recognit 38:2363–2372CrossRefMATHGoogle Scholar
  21. 21.
    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning I. Inf Sci 8:199–249MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Garmendia Luis
    • 1
  • Gonzalez del Campo Ramon
    • 1
  • Lopez Victoria
    • 1
  1. 1.University Complutense of MadridMadridSpain

Personalised recommendations