Key Technologies and Prospects of Individual Combat Exoskeleton

  • Peijiang Yuan
  • Tianmiao Wang
  • Fucun Ma
  • Maozhen Gong
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 214)

Abstract

With the development of modern warfare, the load-carrying of the soldier is more and more heavy. The overload affects the soldier’s ability and readiness and causes acute and chronic musculoskeletal injuries. Exoskeleton can greatly reduce the oxygen consumption of the soldiers and support energy for transferring, running, and jumping, and enhance locomotor and operational capability of the soldiers. The Berkeley Lower Extremity Exoskeleton (BLEEX), Raytheon XOS, Human Universal Load Carrier (HULC), and Hybrid Assisted Limb (HAL) are the most typical exoskeleton robots. The first three are individual combat exoskeletons in support of U.S. Defense Advanced Research Projects Agency (DARPA). The HAL is mainly used for civilian. We research and analyze the structural characteristics and joints movement of the lower limb and structural design, power system, control system, and so on key technologies of those four exoskeletons. At last, we predict the trend of prospective individual combat exoskeleton.

Keywords

Individual combat Exoskeleton Power Control Prospect 

References

  1. 1.
    Zhang K (2011) The structure and motion analysis of individual soldier exoskeleton. J Sci Technol Innov Her 13:224–226Google Scholar
  2. 2.
    Knapik Maj(ret) J (2000) Physiological, biomechanical and medical aspects of soldiers load carriage. In: Meeting on soldier mobility: innovations in load carriage system design and evaluation, Kingston, pp 27–29Google Scholar
  3. 3.
    Yang Z, Zhang J, Gui L, Zhang Y (2009) Summarize on the control method of exoskeleton robot. J Nav Aeronaut Astronaut Univ 24:520–525Google Scholar
  4. 4.
    Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. J IEEE Trans Robotics 24:1–15CrossRefGoogle Scholar
  5. 5.
    Kazerooni HW (2005) Exoskeletons for human power augmentation. In: 2005 IEEE/RSJ international conference on intelligent robots and system. IEEE Press, New York, pp 3120–3125Google Scholar
  6. 6.
    Zoss A, Kazerooniw H (2006) Design of an electrically actuated lower extremity exoskeleton. J Adv Robotics 20:967–988CrossRefGoogle Scholar
  7. 7.
    Zoss A, Kazerooni HW, Chu A (2005) On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX). In: 2005 IEEE/RSJ international conference on intelligent robots and system. IEEE Press, New York, pp 3120–3125Google Scholar
  8. 8.
    Kazerooni HW (2005) The berkeley lower extremity exoskeleton. In: International conference on field and service robotics, Port Douglas, pp 17–20Google Scholar
  9. 9.
    Dombrowski P, Coval D (2012) Private first class iron man. J Swanson Sch Eng 04:149–157Google Scholar
  10. 10.
    Lee H, Kim W, Han C (2012) The technical trend of the exoskeleton robot system for human power assistance. Int J Precis Eng Manuf 13:1491–1497CrossRefGoogle Scholar
  11. 11.
    Ferris PD (2010) Robotic lower limb orthosis: goals obstacles and current research. In: the 34th annual meeting of the american society of biomechanics, symposia: robotic lower limb ortheses and prostheses, San Diego, pp 324–332Google Scholar
  12. 12.
    Yin J (2010) Analysis and design of wearable lower extremity exoskeleton. J Syst Simul 12:7–18Google Scholar
  13. 13.
    Hirsh C, Karloski D (2009) Design and implementation of mechanized exoskeletons in the armed forces. In: the ninth annual freshman conference, Pittsburgh, pp 301–307Google Scholar
  14. 14.
    Raade J (2004) Monopropellant-driven free piston hydraulic pump for mobile robotic systems. J Dyn Syst Meas Control 126:75–81CrossRefGoogle Scholar
  15. 15.
    Kazerooni H, Steger W, Huang C (2006) Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). Int J Robotics Res 25:561–573CrossRefGoogle Scholar
  16. 16.
    Kazerooni D, Racine W (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, Pittsburgh, pp 4364–4371Google Scholar
  17. 17.
    Chu A, Kazerooni H, Zoss A (2005) On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, Pittsburgh, pp 4356–4363Google Scholar
  18. 18.
    Maeshima S, Osawa A, Nishio D, Hirano Y (2011) Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. J BMC Neurol 07:96–101Google Scholar
  19. 19.
    Suzuki S, Kawamoto A, Hasegawa D (2012) Intention-based walking support for paraplegia patients with robot suit HAL. J Climb Walk Robots 07:383–408Google Scholar
  20. 20.
    Ghan J, Kazerooni H (2006) System identification for the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2006 IEEE international conference on robotics and automation, Pittsburgh, pp 3477–3484Google Scholar
  21. 21.
    Steger R, Kim SH, Kazerooni H (2006) Control scheme and networked control architecture for the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2006 IEEE international conference on robotics and automation, Pittsburgh, pp 3469–3476Google Scholar
  22. 22.
    Okamura S, Tanaka A (2011) Exoskeletons in neurological diseases—current and potential future applications. J Adv Clin Exp Med 06:227–233Google Scholar
  23. 23.
    Steger R, Kim SH, Kazerooni H (1999) EMG-based prototype powered assistive system for walking aid. In: Proceedings of the Asian symposium on industrial automation and robotics (ASIAR’99), Bangkok, pp 229–234Google Scholar
  24. 24.
    Cao X (2010) The analysis of the development of American soldiers system. J Mod Mil 02:50–54Google Scholar
  25. 25.
    Li H, Wang H, Zhang P (2012) Application prospect of exoskeleton equipment in future individual soldier system. J Mach Des Manuf 03:275–276Google Scholar
  26. 26.
    Li H (2010) The advanced soldiers’ equipment system (FELIN) of French army finished the experiment evaluation. J Arms Equip 01:67–69Google Scholar
  27. 27.
    Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuro-Eng Rehabil 06:1743–1751Google Scholar
  28. 28.
    Baklouti M, Saleh JA, Monacelli E, Couvet S (2009) Human machine interface in assistive robotics: application to a force controlled upper-limb powered exoskeleton. J Adv Robotics 12:211–221Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peijiang Yuan
    • 1
  • Tianmiao Wang
    • 1
  • Fucun Ma
    • 1
  • Maozhen Gong
    • 1
  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina

Personalised recommendations