Skip to main content

Measuring Landscapes Quality Using Fuzzy Logic and GIS

  • 1960 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 213)


A methodology to evaluate visual quality and fragility of landscapes with fuzzy logic and GIS is given. The fuzzy concept of landscape is modeled with fuzzy sets and fuzzy connectives and used in ArcGIS to evaluate every point of a map.


  • GIS
  • Fuzzy logic
  • Visual fragility
  • Visual quality
  • Landscape
  • Intrinsic visual fragility
  • Acquired visual fragility

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-37829-4_37
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-37829-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)


  1. Otero I, JCN Muñoz, Hernández, M (1996) Valoración del Paisaje y del Impacto Paisajístico de las Construcciones en el Páramo Leonés. Revista de Cartografía, SIQ Teledetección y medioambiente. 52–74

    Google Scholar 

  2. Bishop I (2002) Determination of thresholds of visual impact: the case of wind turbines. Environ Plan B-Plann Des 29(5):707–718

    CrossRef  Google Scholar 

  3. Bishop I (2003) Assessment of visual qualities, impacts, and behaviours, in the landscape, by using measures of visibility. Environ Plan B-Plan Des 30(5):677–688

    CrossRef  Google Scholar 

  4. Turner et al (2001) A visibility graphs and landscape visibility analysis. Int J Geogr Inf Sci 15(3):221–237

    Google Scholar 

  5. Fisher PF (1995) An exploration of probable viewsheds in landscape planning. Environ Plan B-Plan Des 22(5):527–546

    CrossRef  Google Scholar 

  6. Ramos et al (1986) Visual landscape evaluation. A grid Technique. Landsc Plan 3:67–88

    Google Scholar 

  7. Polakoski K (1975) Landscape assessment of the upper great lakes basin resources: a macro-geomorphic and micro-composition analysis. Landsc assess Values percept resources 203–219

    Google Scholar 

  8. Calvo Iglesias M (2000) Análisis del paisaje con técnicas SIG

    Google Scholar 

  9. Escribano M, Paisaje El et al (1987) Unidades Temáticas Ambientales de la Dirección General del Medio Ambiente. MOPU, Madrid

    Google Scholar 

  10. MMA (2004) Guía para la Elaboración de Estudios del Medio Físico. Contenido y Metodología

    Google Scholar 

  11. Klement EP, Messiar R, Pap P (2000) Triangular norms. Kluwer academic publishers, Dordrecht

    CrossRef  MATH  Google Scholar 

  12. Zadeh LA (1965) Fuzzy sets. Inf. Control 8(3):338–353

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Victor Estévez González .

Editor information

Editors and Affiliations



Abstract of fuzzy sets and fuzzy overlay used in the paper:

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González, V.E., Salvador, L.G., López, V.L. (2014). Measuring Landscapes Quality Using Fuzzy Logic and GIS. In: Sun, F., Li, T., Li, H. (eds) Foundations and Applications of Intelligent Systems. Advances in Intelligent Systems and Computing, vol 213. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37828-7

  • Online ISBN: 978-3-642-37829-4

  • eBook Packages: EngineeringEngineering (R0)