Skip to main content

Trajectory Tracking Method for UAV Based on Intelligent Adaptive Control and Dynamic Inversion

  • Conference paper
  • First Online:
  • 2078 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 213))

Abstract

This paper discusses the flight control strategy based on intelligent adaptive control and dynamic inversion. The primary use of the Optimal Control Modification (OCM) adaptive control is to add damping to the neural network controller weight update law so as to reduce high-frequency oscillations in the weights and to prevent parameter drift in the absence of persistent excitation. The OCM is applied to the inner loop control of an UAV during flight conditions to investigate its flight control augmentation capability to a dynamic inversion (DI) controller subject to off-nominal flight conditions.

This work was supported by the National Basic Research Program of China (973 Program) (2012CB720000), the National Natural Science Foundation of China (61225015,60974011), the PhD Programs Foundation of Ministry of Education of China (20091101110023, 20111101110012), and Beijing Municipal Natural Science Foundation (4102053, 4101001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ren W, Beard R (2004) Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. AIAA Aerospace Conference. IEEE Trans Control Syst Technol 12(5):706–716

    Article  Google Scholar 

  2. Valavanis K, Oh P, Piegl L (eds) (2009) Unmanned aircraft systems. Springer, London

    Google Scholar 

  3. Wegener S, Sullivan D, Frank J, Enomoto F (2004) UAV Autonomous operations for airborne science missions. In: AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit: 2004–6416

    Google Scholar 

  4. Gruszka A, Malisoff M (eds) (2012) Bounded tracking controllers and robustness analysis for UAVs. IEEE Tran Autom Control: 19–21

    Google Scholar 

  5. Shima T, Rasmussen S (eds) (2009) UAV cooperative decision and control: challenges and practical approaches. SIAM, Philadelphia

    Google Scholar 

  6. Ailon A (2009) Trajectory tracking for UAVs with bounded inputs and some related applications. IFAC Symposium on Robust Control Design, Haifa, Israel: 355–360

    Google Scholar 

  7. Tony (2009) Six-DOF trajectory tracking for payload directed flight using trajectory linearization control. In: AIAA Aerospace Conference, Washington: 1897

    Google Scholar 

  8. AICHiddabi SA, McClamroch NH (2002) Aggressive longitudinal aircraft trajectory tracking using nonlinear control. J Guidance Control Dyn 25(1): 26–32

    Google Scholar 

  9. Fujimori A, Kurozumi M, Nikiforuk PN, Gupta MM (2000) Flight control design of an automatic landing flight experiment vehicle. J Guidance Control Dyn 23(2):373–376

    Article  Google Scholar 

  10. Sieberling S, Chu QP, Mulder JA (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guidance Control Dyn 33(6):1732–1742

    Article  Google Scholar 

  11. Hameduddin I, AH (2012) Bajodah nonlinear generalised dynamic inversion for aircraft manoeuvring control. Int J Control : 1–14

    Google Scholar 

  12. Lam Quang M, Nguyen Nhan T, Oppenheimer Michael W (2012) Intelligent adaptive flight control using optimal control modification and neural network as control augmentation layer and robustness enhancer. In: AIAA Aerospace Conference, California: 19–21

    Google Scholar 

  13. Schierman John D, Ward David G, Hull Jason R, Gandhi Neha (2004) Integrated adaptive guidance and control for re-entry vehicles with flight-test results. J Guidance Control Dyn 27(6):975–988

    Article  Google Scholar 

  14. Ochi S, Takano H, Baba Y (2002) Flight trajectory tracking system applied to inverse control for aerobatic maneuvers. Inverse problems in engineering mechanics. Elsevier Science Ltd, Amsterdam: 337–344

    Google Scholar 

  15. Beard R, McLain T, Goodrich M, Anderson E (2002) Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot Autom 18(6):911–922

    Article  Google Scholar 

  16. Gu G, Chandler P, Schumacher C, Sparks A, Pachter M (2006) Optimal cooperative sensing using a team of UAVs. IEEE Trans. Aerosp Electro Syst 42(4): 1446–1458

    Google Scholar 

  17. Valavanis K, Oh P, Piegl L (eds) (2009) Unmanned aircraft systems. Springer, London

    Google Scholar 

  18. Jiang Z-P, Lefeber E, Nijmeijer H (2001) Saturated stabilization and tracking control of a nonholonomic mobile robot. Syst. Control Lett. 42(5): 327–332

    Google Scholar 

  19. Park S, Deysty J, Howz JP (2004) A new nonlinear guidance logic for trajectory tracking. AIAA: 2004–1430

    Google Scholar 

  20. Lane SH, Stengel RF (1988) Flight control design using non-linear inverse dynamics. Automatica 24:471–483

    Article  MathSciNet  MATH  Google Scholar 

  21. Yoon H, Agrawal BN (2009) Adaptive control of uncertain Hamiltonian multi-input multi-output systems: with application to spacecraft control. IEEE Trans Control Syst Technol 17(4):900–906

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, J., Xia, Y. (2014). Trajectory Tracking Method for UAV Based on Intelligent Adaptive Control and Dynamic Inversion. In: Sun, F., Li, T., Li, H. (eds) Foundations and Applications of Intelligent Systems. Advances in Intelligent Systems and Computing, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37829-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37829-4_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37828-7

  • Online ISBN: 978-3-642-37829-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics