Trajectory Tracking Method for UAV Based on Intelligent Adaptive Control and Dynamic Inversion

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 213)


This paper discusses the flight control strategy based on intelligent adaptive control and dynamic inversion. The primary use of the Optimal Control Modification (OCM) adaptive control is to add damping to the neural network controller weight update law so as to reduce high-frequency oscillations in the weights and to prevent parameter drift in the absence of persistent excitation. The OCM is applied to the inner loop control of an UAV during flight conditions to investigate its flight control augmentation capability to a dynamic inversion (DI) controller subject to off-nominal flight conditions.


Intelligent adaptive flight control Dynamic inversion UAV Flight control. 


  1. 1.
    Ren W, Beard R (2004) Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. AIAA Aerospace Conference. IEEE Trans Control Syst Technol 12(5):706–716CrossRefGoogle Scholar
  2. 2.
    Valavanis K, Oh P, Piegl L (eds) (2009) Unmanned aircraft systems. Springer, LondonGoogle Scholar
  3. 3.
    Wegener S, Sullivan D, Frank J, Enomoto F (2004) UAV Autonomous operations for airborne science missions. In: AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit: 2004–6416Google Scholar
  4. 4.
    Gruszka A, Malisoff M (eds) (2012) Bounded tracking controllers and robustness analysis for UAVs. IEEE Tran Autom Control: 19–21Google Scholar
  5. 5.
    Shima T, Rasmussen S (eds) (2009) UAV cooperative decision and control: challenges and practical approaches. SIAM, PhiladelphiaGoogle Scholar
  6. 6.
    Ailon A (2009) Trajectory tracking for UAVs with bounded inputs and some related applications. IFAC Symposium on Robust Control Design, Haifa, Israel: 355–360Google Scholar
  7. 7.
    Tony (2009) Six-DOF trajectory tracking for payload directed flight using trajectory linearization control. In: AIAA Aerospace Conference, Washington: 1897Google Scholar
  8. 8.
    AICHiddabi SA, McClamroch NH (2002) Aggressive longitudinal aircraft trajectory tracking using nonlinear control. J Guidance Control Dyn 25(1): 26–32Google Scholar
  9. 9.
    Fujimori A, Kurozumi M, Nikiforuk PN, Gupta MM (2000) Flight control design of an automatic landing flight experiment vehicle. J Guidance Control Dyn 23(2):373–376CrossRefGoogle Scholar
  10. 10.
    Sieberling S, Chu QP, Mulder JA (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guidance Control Dyn 33(6):1732–1742CrossRefGoogle Scholar
  11. 11.
    Hameduddin I, AH (2012) Bajodah nonlinear generalised dynamic inversion for aircraft manoeuvring control. Int J Control : 1–14Google Scholar
  12. 12.
    Lam Quang M, Nguyen Nhan T, Oppenheimer Michael W (2012) Intelligent adaptive flight control using optimal control modification and neural network as control augmentation layer and robustness enhancer. In: AIAA Aerospace Conference, California: 19–21Google Scholar
  13. 13.
    Schierman John D, Ward David G, Hull Jason R, Gandhi Neha (2004) Integrated adaptive guidance and control for re-entry vehicles with flight-test results. J Guidance Control Dyn 27(6):975–988CrossRefGoogle Scholar
  14. 14.
    Ochi S, Takano H, Baba Y (2002) Flight trajectory tracking system applied to inverse control for aerobatic maneuvers. Inverse problems in engineering mechanics. Elsevier Science Ltd, Amsterdam: 337–344Google Scholar
  15. 15.
    Beard R, McLain T, Goodrich M, Anderson E (2002) Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot Autom 18(6):911–922CrossRefGoogle Scholar
  16. 16.
    Gu G, Chandler P, Schumacher C, Sparks A, Pachter M (2006) Optimal cooperative sensing using a team of UAVs. IEEE Trans. Aerosp Electro Syst 42(4): 1446–1458Google Scholar
  17. 17.
    Valavanis K, Oh P, Piegl L (eds) (2009) Unmanned aircraft systems. Springer, LondonGoogle Scholar
  18. 18.
    Jiang Z-P, Lefeber E, Nijmeijer H (2001) Saturated stabilization and tracking control of a nonholonomic mobile robot. Syst. Control Lett. 42(5): 327–332Google Scholar
  19. 19.
    Park S, Deysty J, Howz JP (2004) A new nonlinear guidance logic for trajectory tracking. AIAA: 2004–1430Google Scholar
  20. 20.
    Lane SH, Stengel RF (1988) Flight control design using non-linear inverse dynamics. Automatica 24:471–483MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yoon H, Agrawal BN (2009) Adaptive control of uncertain Hamiltonian multi-input multi-output systems: with application to spacecraft control. IEEE Trans Control Syst Technol 17(4):900–906CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of AutomationBeijing Institute of TechnologyBeijingChina

Personalised recommendations