Skip to main content

Assessment of Bayesian Network Classifiers as Tools for Discriminating Breast Cancer Pre-diagnosis Based on Three Diagnostic Methods

  • Conference paper
Advances in Artificial Intelligence (MICAI 2012)

Abstract

In recent years, a technique known as thermography has been again seriously considered as a complementary tool for the pre-diagnosis of breast cancer. In this paper, we explore the predictive value of thermographic atributes, from a database containing 98 cases of patients with suspicion of having breast cancer, using Bayesian networks. Each patient has corresponding results for different diagnostic tests: mammography, thermography and biopsy. Our results suggest that these atributes are not enough for producing good results in the pre-diagnosis of breast cancer. On the other hand, these models show unexpected interactions among the thermographical attributes, especially those directly related to the class variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA: A Cancer Journal for Clinicians 61, 69–90 (2011)

    Article  Google Scholar 

  2. Geller, B.M., Kerlikowske, K.C., Carney, P.A., Abraham, L.A., Yankaskas, B.C., Taplin, S.H., Ballard-Barbash, R., Dignan, M.B., Rosenberg, R., Urban, N., Barlow, W.E.: Mammography surveillance following breast cancer. Breast Cancer Research and Treatment 81, 107–115 (2003)

    Article  Google Scholar 

  3. Bonnema, J., Van Geel, A.N., Van Ooijen, B., Mali, S.P.M., Tjiam, S.L., Henzen-Logmans, S.C., Schmitz, P.I.M., Wiggers, T.: Ultrasound-guided aspiration biopsy for detection of nonpalpable axillary node metastases in breast cancer patients: New diagnostic method. World Journal of Surgery 21, 270–274 (1997)

    Article  Google Scholar 

  4. Schnall, M.D., Blume, J., Bluemke, D.A., DeAngelis, G.A., DeBruhl, N., Harms, S., Heywang-Köbrunner, S.H., Hylton, N., Kuhl, C., Pisano, E.D., Causer, P., Schnitt, S.J., Smazal, S.F., Stelling, C.B., Lehman, C., Weatherall, P.T., Gatsonis, C.A.: Mri detection of distinct incidental cancer in women with primary breast cancer studied in ibmc 6883. Journal of Surgical Oncology 92, 32–38 (2005)

    Article  Google Scholar 

  5. Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences 48, 849–859 (2009)

    Article  Google Scholar 

  6. Foster, K.R.: Thermographic detection of breast cancer. IEEE Engineering in Medicine and Biology Magazine 17, 10–14 (1998)

    Article  Google Scholar 

  7. Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel, A.J., Osborne, M.P., Simmons, R.M.: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. The American Journal of Surgery 196, 523–526 (2008)

    Article  Google Scholar 

  8. Hairong, Q., Phani, T.K., Zhongqi, L.: Early detection of breast cancer using thermal texture maps. In: Proceedings. 2002 IEEE International Symposium on Biomedical Imaging, pp. 309–312 (2002)

    Google Scholar 

  9. Wang, J., Chang, K.J., Chen, C.Y., Chien, K.L., Tsai, Y.S., Wu, Y.M., Teng, Y.C., Shih, T.T.: Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study. BioMedical Engineering OnLine 9, 1–14 (2010)

    Article  Google Scholar 

  10. Gutierrez, F., Vazquez, J., Venegas, L., Terrazas, S., Marcial, S., Guzman, C., Perez, J., Saldana, M.: Feasibility of thermal infrared imaging screening for breast cancer in rural communities of southern mexico: The experience of the centro de estudios y prevencion del cancer (ceprec). In: 2009 ASCO Annual Meeting, p. 1521. American Society of Clinical Oncology (2009)

    Google Scholar 

  11. Ng, E.Y.K., Chen, Y., Ung, L.N.: Computerized breast thermography: study of image segmentation and tempe rature cyclic variations. Journal of Medical Engineering &Technology 25, 12–16 (2001)

    Google Scholar 

  12. EtehadTavakol, M., Sadri, S., Ng, E.Y.K.: Application of k- and fuzzy c-means for color segmentation of thermal infrared breast images. Journal of Medical Systems 34, 35–42 (2010)

    Article  Google Scholar 

  13. EtehadTavakol, M., Lucas, C., Sadri, S., Ng, E.Y.K.: Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. Journal of Healthcare Engineering 1, 27–44 (2010)

    Article  Google Scholar 

  14. Ng, E.Y.K., Fok, S.-C., Peh, Y.C., Ng, F.C., Sim, L.S.J.: Computerized detection of breast cancer with artificial intelligence and thermograms. Journal of Medical Engineering &Technology 26, 152–157 (2002)

    Article  Google Scholar 

  15. Ng, E.Y.K., Fok, S.-C.: A framework for early discovery of breast tumor using thermography with artificial neural network. The Breast Journal 9, 341–343 (2003)

    Article  Google Scholar 

  16. Wishart, G.C., Campisi, M., Boswell, M., Chapman, D., Shackleton, V., Iddles, S., Hallett, A., Britton, P.D.: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. European Journal of Surgical Oncology (EJSO) 36, 535–540 (2010)

    Article  Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann Publishers (1988)

    Google Scholar 

  18. Neuberg, L.G.: Causality: Models, reasoning, and inference, by judea pearl. Econometric Theory 19, 675–685 (2003)

    Article  Google Scholar 

  19. Friedman, N., Goldszmidt, M.: Learning bayesian networks from data. University of California, Berkeley and Stanford Research Institute, pp. 117 (1998)

    Google Scholar 

  20. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. TheKaufmann Series in Data Management Systems. Elsevier (2006)

    Google Scholar 

  21. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection, pp. 1137–1143. Morgan Kaufmann (1995)

    Google Scholar 

  23. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann (2005)

    Google Scholar 

  24. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons (2001)

    Google Scholar 

  25. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2009)

    Google Scholar 

  26. Lavrac, N.: Selected techniques for data mining in medicine. Artificial Intelligence in Medicine 16, 3–23 (1999)

    Article  Google Scholar 

  27. Cross, S.S., Dubé, A.K., Johnson, J.S., McCulloch, T.A., Quincey, C., Harrison, R.F., Ma, Z.: Evaluation of a statistically derived decision tree for the cytodiagnosis of fine needle aspirates of the breast (fnab). Cytopathology 9, 178–187 (1998)

    Article  Google Scholar 

  28. Cross, S.S., Stephenson, T.J., Harrisont, R.F.: Validation of a decision support system for the cytodiagnosis of fine needle aspirates of the breast using a prospectively collected dataset from multiple observers in a working clinical environment. Cytopathology 11, 503–512 (2000)

    Article  Google Scholar 

  29. Cross, S.S., Downs, J., Drezet, P., Ma, Z., Harrison, R.F.: Which decision support technologies are appropriate for the cytodiagnosis of breast cancer?, pp. 265–295. World Scientific (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maria Yaneli, AA., Nicandro, CR., Efrén, MM., Enrique, MDCM., Nancy, PC., Héctor Gabriel, AM. (2013). Assessment of Bayesian Network Classifiers as Tools for Discriminating Breast Cancer Pre-diagnosis Based on Three Diagnostic Methods. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37807-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37806-5

  • Online ISBN: 978-3-642-37807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics