Advertisement

Binaural Systems in Robotics

  • S. Argentieri
  • A. Portello
  • M. Bernard
  • P. Danès
  • B. Gas
Part of the Modern Acoustics and Signal Processing book series (MASP)

Abstract

Audition is often described by physiologists as the most important sense in humans, due to its essential role in communication and socialization. But quite surprisingly, the interest of this modality for robotics arose only in the 2000s, brought to evidence by cognitive robotics and Human–robot interaction. Since then, numerous contributions have been proposed to the field of robot audition, ranging from sound localization to scene analysis. Binaural approaches were investigated first, then became forsaken due to mixed results. Nevertheless, the last years have witnessed a renewal of interest in binaural active audition, that is, in the opportunities and challenges opened by the coupling of binaural sensing and robot motion. This chapter proposes a comprehensive state of the art of binaural approaches to robot audition. Though the literature on binaural audition and, more generally, on acoustics and signal processing, is a fundamental source of knowledge, the tasks, constraints, and environments of robotics raise original issues. These are reviewed, prior to the most prominent contributions, platforms and projects. Two lines of research in binaural active audition, conducted by the current authors, are then outlined, one of which is tightly connected to psychology of perception.

Keywords

Sound Source Humanoid Robot Automatic Speech Recognition Sound Localization Robot Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was conducted within the project binaural active audition for humanoid robots, BINAAHR, funded under contract # ANR-09-BLAN-0370-02 by ANR, France, and JST, Japan. The authors would like to thank two anonymous reviewers for valuable suggestions.

References

  1. 1.
    J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Intl. J. Computer Vision, 1:333–356, 1988.Google Scholar
  2. 2.
    S. Argentieri and P. Danès. Broadband variations of the MUSIC high-resolution method for sound source localization in robotics. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2007, pages 2009–2014, 2007.Google Scholar
  3. 3.
    E. Arnaud, H. Christensen, Y.-C. Lu, J. Barker, V. Khalidov, M. Hansard, B. Holveck, H. Mathieu, R. Narasimha, E. Taillant, F. Forbes, and R. Horaud. The CAVA corpus: Synchronised stereoscopic and binaural datasets with head movements. In ACM/IEEE Intl. Conf. Multimodal, Interfaces, ICMI’08, 2008.Google Scholar
  4. 4.
    M. Aytekin, C. Moss, and J. Simon. A sensorimotor approach to sound localization. Neural Computation, 20:603–635, 2008.Google Scholar
  5. 5.
    P. Azad, T. Gockel, R. Dillmann. Computer Vision: Principles and Practice. Elektor, Electronics, 2008.Google Scholar
  6. 6.
    R. Bajcsy. Active perception. Proc. of the IEEE, 76:966–1005, 1988.Google Scholar
  7. 7.
    Y. Bar-Shalom and X. Li. Estimation and Tracking: Principles, Techniques and Software. Artech House, 1993.Google Scholar
  8. 8.
    M. Bernard, S. N’Guyen, P. Pirim, B. Gas, and J.-A. Meyer. Phonotaxis behavior in the artificial rat Psikharpax. In Intl. Symp. Robotics and Intelligent Sensors, IRIS’2010, pages 118–122, Nagoya, Japan, 2010.Google Scholar
  9. 9.
    M. Bernard, P. Pirim, A. de Cheveigné, and B. Gas. Sensorimotor learning of sound localization from an auditory evoked behavior. In IEEE Intl. Conf. Robotics and Automation, ICRA’2012, pages 91–96, St. Paul, MN, 2012.Google Scholar
  10. 10.
    J. Blauert, D. Kolossa, K. Obermayer, and K. Adiloglu. Further challenges and the road ahead. In J. Blauert, editor, The technology of binaural listening, chapter 18. Springer, Berlin-Heidelberg-New York NY, 2013.Google Scholar
  11. 11.
    W. Brimijoin, D. Mc Shefferty, and M. Akeroyd. Undirected head movements of listeners with asymmetrical hearing impairment during a speech-in-noise task.Hearing Research, 283:162–8, 2012.Google Scholar
  12. 12.
    R. Brooks, C. Breazeal, N. Marjanović, B. Scassellati, and M. Williamson. The Cog project: Building a humanoid robot. In C. Nehaniv, editor, Computations for Metaphors, Analogy, and Agents, volume 1562 of LNCS, pages 52–87. Springer, 1999.Google Scholar
  13. 13.
    Y. Chen and Y. Rui. Real-time speaker tracking using particle filter sensor fusion. Proc. of the IEEE, 920:485–494, 2004.Google Scholar
  14. 14.
    H. Christensen and J. Barker. Using location cues to track speaker changes from mobile binaural microphones. In Interspeech 2009, Brighton, UK, 2009.Google Scholar
  15. 15.
    H. Christensen, J. Barker, Y.-C. Lu, J. Xavier, R. Caseiro, and H. Arafajo. POPeye: Real-time binaural sound-source localisation on an audio-visual robot head. In Conf. Natural Computing and Intelligent Robotics, 2009.Google Scholar
  16. 16.
    Computing Community Consortium. A roadmap for US robotics. From Internet to Robotics, 2009. http://www.us-robotics.us/reports/CCC%20Report.pdf.
  17. 17.
    M. Cooke, Y. Lu, Y. Lu, and R. Horaud. Active hearing, active speaking. In Intl. Symp. Auditory and Audiological Res., 2007.Google Scholar
  18. 18.
    M. Cooke, A. Morris, and P. Green. Recognizing occluded speech. In Proceedings of the ESCA Tutorial and Res.arch Worksh. Auditory Basis of Speech Perception, pages 297–300, Keele University, United Kingdom, 1996.Google Scholar
  19. 19.
    M. Cooke, A. Morris, and P. Green. Missing data techniques for robust speech recognition. In Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP’1997, pages 863–866, Munich, Germany, 1997.Google Scholar
  20. 20.
    B. Cornelis, M. Moonen, and J. Wouters. Binaural voice activity detection for MWF-based noise reduction in binaural hearing aids. In European Signal Processing Conf., EUSIPCO’2011, pages Barcelona, Spain, 2011.Google Scholar
  21. 21.
    P. Danès and J. Bonnal. Information-theoretic detection of broadband sources in a coherent beamspace MUSIC scheme. In IEEE/RSJ Intl. Conf. Intell. Robots and Systems, IROS’2010, pages 1976–1981, Taipei, Taiwan, 2010.Google Scholar
  22. 22.
    A. Deleforge and R. Horaud. Learning the direction of a sound source using head motions and spectral features. Technical Report 7529, INRIA, 2011.Google Scholar
  23. 23.
    A. Deleforge and R. Horaud. The Cocktail-Party robot: Sound source separation and localisation with an active binaural head. In IEEE/ACM Intl. Conf. Human Robot Interaction, HRI’2012, Boston, MA, 2012.Google Scholar
  24. 24.
    J. Gibson. The Ecological Approach to Visual Perception. Erlbaum, 1982.Google Scholar
  25. 25.
    M. Giuliani, C. Lenz, T. Müller, M. Rickert, and A. Knoll. Design principles for safety in human-robot interaction. Intl. J. Social Robotics, 2:253–274, 2010.Google Scholar
  26. 26.
    A. Handzel, S. Andersson, M. Gebremichael, and P. Krishnaprasad. A biomimetic apparatus for sound-source localization. In IEEE Conf. Decision and Control, CDC’2003, volume 6, pages 5879–5884, Maui, HI, 2003.Google Scholar
  27. 27.
    A. Handzel and P. Krishnaprasad. Biomimetic sound-source localization. IEEE Sensors J., 2:607–616, 2002.Google Scholar
  28. 28.
    S. Hashimoto, S. Narita, H. Kasahara, A. Takanishi, S. Sugano, K. Shirai, T. Kobayashi, H. Takanobu, T. Kurata, K. Fujiwara, T. Matsuno, T. Kawasaki, K. Hoashi. Humanoid robot-development of an information assistant robot, Hadaly. In IEEE Intl. Worksh. Robot and Human, Communication, RO-MAN’1997, pages 106–111, 1997.Google Scholar
  29. 29.
    J. Hörnstein, M. Lopes, J. Santos-victor, and F. Lacerda. Sound localization for humanoid robots - building audio-motor maps based on the HRTF. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2006, pages 1170–1176, Beijing, China, 2006.Google Scholar
  30. 30.
    J. Huang, T. Supaongprapa, I. Terakura, F. Wang, N. Ohnishi, and N. Sugie. A model-based sound localization system and its application to robot navigation. Robotics and Autonomous Syst., 270:199–209, 1999.Google Scholar
  31. 31.
    G. Ince, K. Nakadai, T. Rodemann, Y. Hasegawa, H. Tsujino, and J. Imura. Ego noise suppression of a robot using template subtraction. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2009, pages 199–204, Saint Louis, MO, 2009.Google Scholar
  32. 32.
    G. Ince, K. Nakadai, T. Rodemann, J. Imura, K. Nakamura, and H. Nakajima. Incremental learning for ego noise estimation of a robot. InIEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2011, pages 131–136, San Francisco, CA, 2011.Google Scholar
  33. 33.
    G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, and J. Imura. Multi-talker speech recognition under ego-motion noise using missing feature theory. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2010, pages 982–987, Taipei, Taiwan, 2010.Google Scholar
  34. 34.
    R. Irie. Multimodal sensory integration for localization in a humanoid robot. In IJCAI Worksh. Computational Auditory Scene Analysis, pages 54–58, Nagoya, Aichi, Japan, 1997.Google Scholar
  35. 35.
    A. Ito, T. Kanayama, M. Suzuki, and S. Makino. Internal noise suppression for speech recognition by small robots. In Interspeech’2005, pages 2685–2688, Lisbon, Portugal, 2005.Google Scholar
  36. 36.
    M. Ji, S. Kim, H. Kim, K. Kwak, and Y. Cho. Reliable speaker identification using multiple microphones in ubiquitous robot companion environment. In IEEE Intl. Conf. Robot & Human Interactive Communication, RO-MAN’2007, pages 673–677, Jeju Island, Korea, 2007.Google Scholar
  37. 37.
    H.-D. Kim, J. Kim, K. Komatani, T. Ogata, and H. Okuno. Target speech detection and separation for humanoid robots in sparse dialogue with noisy home environments. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2008, pages 1705–1711, Nice, France, 2008.Google Scholar
  38. 38.
    C. Knapp and G. Carter. The generalized correlation method for estimation of time delay. IEEE Trans. Acoustics, Speech and, Signal Processing, 24:320–327, 1976.Google Scholar
  39. 39.
    C. Knapp and G. Carter. Time delay estimation in the presence of relative motion. In IEEE Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP’1977, pages 280–283, Storrs, CT, 1977.Google Scholar
  40. 40.
    Y. Kubota, M. Yoshida, K. Komatani, T. Ogata, and H. Okuno. Design and implementation of a 3D auditory scene visualizer: Towards auditory awareness with face tracking. In IEEE Intl. Symp. Multimedia, ISM’2008, pages 468–476, Berkeley, CA, 2008.Google Scholar
  41. 41.
    M. Kumon and Y. Noda. Active soft pinnae for robots. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2011, pages 112–117, San Francisco, CA, 2011.Google Scholar
  42. 42.
    M. Kumon, R. Shimoda, and Z. Iwai. Audio servo for robotic systems with pinnae. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2005, pages 885–890, Edmonton, Canada, 2005.Google Scholar
  43. 43.
    S. Kurotaki, N. Suzuki, K. Nakadai, H. Okuno, and H. Amano. Implementation of active direction-pass filter on dynamically reconfigurable processor. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2005, pages 3175–3180, Edmonton, Canada, 2005.Google Scholar
  44. 44.
    Q. Lin, E. E. Jan, and J. Flanagan. Microphone arrays and speaker identification. IEEE Trans. Speech and Audio Processing, 2:622–629, 1994.Google Scholar
  45. 45.
    R. Lippmann and B. A. Carlson. Using missing feature theory to actively select features for robust speech recognition with interruptions, filtering, and noise. In Eurospeech’1997, pages 863–866, Rhodos, Greece, 1997.Google Scholar
  46. 46.
    Y.-C. Lu and M. Cooke. Motion strategies for binaural localisation of speech sources in azimuth and distance by artificial listeners. Speech Comm., 53:622–642, 2011.Google Scholar
  47. 47.
    V. Lunati, J. Manhès, and P. Danès. A versatile system-on-a-programmable-chip for array processing and binaural robot audition. InIEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2012, pages 998–1003, Vilamoura, Portugal, 2012.Google Scholar
  48. 48.
    D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Feeeman, W.H., 1982.Google Scholar
  49. 49.
    E. Martinson and B. Fransen. Dynamically reconfigurable microphone arrays. In IEEE Intl. Conf. Robotics and Automation, ICRA’2011, pages 5636–5641, Shangai, China, 2011.Google Scholar
  50. 50.
    Y. Matsusaka, T. Tojo, S. Kubota, K. Furukawa, D. Tamiya, K. Hayata, Y. Nakano, and T. Kobayashi. Multi-person conversation via multi-modal interface - a robot who communicate with multi-user -. In Eurospeech’1999, pages 1723–1726, Budapest, Hungary, 1999.Google Scholar
  51. 51.
    T. May, S. van de Par, and A. Kohlrausch. Binaural localization and detection of speakers in complex acoustic scenes. In J. Blauert, editor, The Technology of Binaural Listening, chapter 15. Springer, Berlin-Heidelberg-New York NY, 2013.Google Scholar
  52. 52.
    F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J.-M. Valin, E. Beaudry, C. Raïevsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M.-A. Roux, S. Caron, P. Frenette, and F. Kabanza. Spartacus attending the 2005 AAAI conference.Autonomous Robots, 22:369–383, 2007.Google Scholar
  53. 53.
    K. Nakadai, T. Lourens, H. Okuno, and H. Kitano. Active audition for humanoids. In Nat. Conf. Artificial Intelligence, AAAI-2000, pages 832–839, Austin, TX, 2000.Google Scholar
  54. 54.
    K. Nakadai, T. Matsui, H. Okuno, and H. Kitano. Active audition system and humanoid exterior design. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2000, pages 1453–1461, Takamatsu, Japan, 2000.Google Scholar
  55. 55.
    K. Nakadai, D. Matsuura, H. Okuno, and H. Kitano. Applying scattering theory to robot audition system: Robust sound source localization and extraction. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2003, pages 1147–1152, Las Vegas, NV, 2003.Google Scholar
  56. 56.
    K. Nakadai, H. Okuno, and H. Kitano. Epipolar geometry based sound localization and extraction for humanoid audition. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2001, volume 3, pages 1395–1401, Maui, HI, 2001.Google Scholar
  57. 57.
    K. Nakadai, H. Okuno, and H. Kitano. Auditory fovea based speech separation and its application to dialog system. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, IROS’2002, volume 2, pages 1320–1325, Lausanne, Switzerland, 2002.Google Scholar
  58. 58.
    K. Nakadai, H. Okuno, and H. Kitano. Robot recognizes three simultaneous speech by active audition. In IEEE Intl. Conf. Robotics and Automation, ICRA’2003, volume 1, pages 398–405, Taipei, Taiwan, 2003.Google Scholar
  59. 59.
    H. Nakajima, K. Kikuchi, T. Daigo, Y. Kaneda, K. Nakadai, and Y. Hasegawa. Real-time sound source orientation estimation using a 96 channel microphone array. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2009, pages 676–683, Saint Louis, MO, 2009.Google Scholar
  60. 60.
    H. Nakashima and T. Mukai. 3D sound source localization system based on learning of binaural hearing. In IEEE Intl. Conf. Systems, Man and Cybernetics, SMC’2005, pages 3534–3539, Nagoya, Japan, 2005.Google Scholar
  61. 61.
    E. Nemer, R. Goubran, and S. Mahmoud. Robust voice activity detection using higher-order statistics in the LPC residual domain. IEEE Trans. Speech and Audio Processing, 9:217–231, 2001.Google Scholar
  62. 62.
    Y. Nishimura, M. Nakano, K. Nakadai, H. Tsujino, and M. Ishizuka. Speech recognition for a robot under its motor noises by selective application of missing feature theory and MLLR. In ISCA Tutorial and Research Worksh. Statistical and Perceptual Audition, Pittsburgh, PA, 2006.Google Scholar
  63. 63.
    H. Okuno, T. Ogata, K. Komatani, and K. Nakadai. Computational auditory scene analysis and its application to robot audition. In IEEE Intl. Conf. Informatics Res. for Development of Knowledge Society Infrastructure, ICKS’2004, pages 73–80, 2004.Google Scholar
  64. 64.
    J. O’Regan. How to build a robot that is conscious and feels. Minds and Machines, pages 117–136, 2012.Google Scholar
  65. 65.
    J. O’Regan and A. Noë. A sensorimotor account of vision and visual consciousness. Behavioral and brain sciences, 24:939–1031, 2001.Google Scholar
  66. 66.
    D. Philipona and J. K. O’Regan. Is there something out there? inferring space from sensorimotor dependencies. Neural Computation, 15:2029–2049, 2001.Google Scholar
  67. 67.
    B. Pierce, T. Kuratate, A. Maejima, S. Morishima, Y. Matsusaka, M. Durkovic, K. Diepold, and G. Cheng. Development of an integrated multi-modal communication robotic face. In IEEE Worksh. Advanced Robotics and its Social Impacts, RSO’2012, pages 101–102, Munich, Germany, 2012.Google Scholar
  68. 68.
    H. Poincaré. L’espace et la géométrie. Revue de Métaphysique et de Morale, pages 631–646, 1895.Google Scholar
  69. 69.
    A. Portello, P. Danès, and S. Argentieri. Active binaural localization of intermittent moving sources in the presence of false meaurements. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2012, pages 3294–3299, Vilamoura, Portugal, 2012.Google Scholar
  70. 70.
    R. Prasad, H. Saruwatari, and K. Shikano. Enhancement of speech signals separated from their convolutive mixture by FDICA algorithm. Digital Signal Processing, 19:127–133, 2009.Google Scholar
  71. 71.
    L. Rabiner and M. Sambur. An algorithm for determining the endpoints of isolated utterances. The Bell System Techn. J., 54:297–315, 1975.Google Scholar
  72. 72.
    B. Raj, R. Singh, and R. Stern. Inference of missing spectrographic features for robust speech recognition. In Intl. Conf. Spoken Language Processing, Sydney, Australia, 1998.Google Scholar
  73. 73.
    B. Raj and R. M. Stern. Missing-feature approaches in speech recognition. IEEE Signal Processing Mag., 22:101–116, 2005.Google Scholar
  74. 74.
    T. Rodemann. A study on distance estimation in binaural sound localization. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2010, pages 425–430, Taipei, Taiwan, 2010.Google Scholar
  75. 75.
    D. Rosenthal and H. Okuno, editors. Computational Auditory Scene Analysis. Lawrence Erlbaum Associates, 1997.Google Scholar
  76. 76.
    A. Saxena and A. Ng. Learning sound location from a single microphone. In IEEE Intl. Conf. Robotics and Automation, ICRA’2009, pages 1737–1742, Kobe, Japan, 2009.Google Scholar
  77. 77.
    S. Schulz and T. Herfet. Humanoid separation of speech sources in reverberant environments. In Intl. Symp. Communications, Control and Signal Processing, ISCCSP’2008, pages 377–382, Brownsville, TX, 2008.Google Scholar
  78. 78.
    M. L. Seltzer, B. Raj, and R. Stern. A Bayesian classifier for spectrographic mask estimation for missing feature speech recognition. Speech Comm., 43:379–393, 2004.Google Scholar
  79. 79.
    A. Skaf and P. Danès. Optimal positioning of a binaural sensor on a humanoid head for sound source localization. In IEEE Intl. Conf. Humanoid Robots, Humanoids’2011, pages 165–170, Bled, Slovenia, 2011.Google Scholar
  80. 80.
    D. Sodoyer, B. Rivet, L. Girin, C. Savariaux, J.-L. Schwartz, and C. Jutten. A study of lip movements during spontaneous dialog and its application to voice activity detection. J. Acoust. Soc. Am., 125:1184–1196, 2009.Google Scholar
  81. 81.
    M. Stamm and M. Altinsoy. Employing binaural-proprioceptive interaction in human machine interfaces. In J. Blauert, editor, The technology of binaural listening, chapter 17. Springer, Berlin-Heidelberg-New York NY, 2013.Google Scholar
  82. 82.
    R. Takeda, S. Yamamoto, K. Komatani, T. Ogata, and H. Okuno. Missing-feature based speech recognition for two simultaneous speech signals separated by ICA with a pair of humanoid ears. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2006, pages 878–885, Beijing, China, 2006.Google Scholar
  83. 83.
    K. Tanaka, M. Abe, and S. Ando. A novel mechanical cochlea “fishbone” with dual sensor/actuator characteristics. IEEE/ASME Trans. Mechatronics, 3:98–105, 1998.Google Scholar
  84. 84.
    J. Valin, J. Rouat, and F. Michaud. Enhanced robot audition based on microphone array source separation with post-filter. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2004, pages 2123–2128, Sendai, Japan, 2004.Google Scholar
  85. 85.
    H. Van Trees. Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV). Wiley-Interscience, 2002.Google Scholar
  86. 86.
    D. Ward, E. Lehmann, and R. Williamson. Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Trans. Speech and Audio Processing, 11:826–836, 2003.Google Scholar
  87. 87.
    E. Weinstein and A. Weiss. Fundamental limitations in passive time delay estimation - Part II: Wideband systems. IEEE Trans. Acoustics, Speech and Signal Processing, pages 1064–1078, 1984.Google Scholar
  88. 88.
    A. Weiss and E. Weinstein. Fundamental limitations in passive time delay estimation - Part I: Narrowband systems. IEEE Trans. Acoustics, Speech and Signal Processing, pages 472–486, 1983.Google Scholar
  89. 89.
    R. Weiss, M. Mandel, and D. Ellis. Combining localization cues and source model constraints for binaural source separation. Speech Comm., 53:606–621, 2011.Google Scholar
  90. 90.
    R. Woodworth and H. Schlosberg. Experimental Psychology. Holt, Rinehart and Winston, 3rd edition, 1971.Google Scholar
  91. 91.
    T. Yoshida and K. Nakadai. Two-layered audio-visual speech recognition for robots in noisy environments. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2010, pages 988–993, 2010.Google Scholar
  92. 92.
    K. Youssef, S. Argentieri, and J. Zarader. From monaural to binaural speaker recognition for humanoid robots. In IEEE/RAS Intl. Conf. Humanoid Robots, Humanoids’2010, pages 580–586, Nashville, TN, 2010.Google Scholar
  93. 93.
    K. Youssef, S. Argentieri, and J.-L. Zarader. A binaural sound source localization method using auditive cues and vision. In IEEE Intl. Conf. Acoustics, Speech and Signal Processing, ICASSP’2012, pages 217–220, Kyoto, Japan, 2012.Google Scholar
  94. 94.
    K. Youssef, S. Argentieri, and J.-L. Zarader. Towards a systematic study of binaural cues. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, IROS’2012, pages 1004–1009, Vilamoura, Portugal, 2012.Google Scholar
  95. 95.
    K. Youssef, B. Breteau, S. Argentieri, J.-L. Zarader, and Z. Wang. Approaches for automatic speaker recognition in a binaural humanoid context. In Eur. Symp. Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN’2011, pages 411–416, Bruges, Belgium, 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Argentieri
    • 1
  • A. Portello
    • 2
  • M. Bernard
    • 1
  • P. Danès
    • 2
  • B. Gas
    • 1
  1. 1.Inst. des Systèmes Intelligents et de RobotiqueUniv. Pierre et Marie Curie, National Centre for Scientific Research (CNRS)ParisFrance
  2. 2.Lab. d’Analyse et d’Architecture des SystèmesUniv. de Toulouse, Univ. Paul Sabatier, National Centre for Scientific Research (CNRS)ToulouseFrance

Personalised recommendations