Skip to main content

Extracting Sound-Source-Distance Information from Binaural Signals

  • Chapter

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

The problem of distance estimation by computational methods utilizing binaural information is discussed. Initially, a brief overview is given concerning findings related to the auditory distance perception. Then, several acoustical parameters that depend on the distance between the source and the receiver especially within reverberant rooms are presented. An overview of several existing distance estimation techniques using binaural signals is given and a recent distance estimation method is presented in more detail. This method relies on several statistical features extracted from binaural signals and incorporates all the above features into a classification framework based on Gaussian Mixture models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term room transfer function, refers to the frequency-domain representation of the room impulse response.

  2. 2.

    The term binaural room transfer function refers to the frequency-domain representation of the binaural room impulse response.

References

  1. D. R. Begault. Perceptual effects of synthetic reverberation on three-dimensional audio systems. J. Audio Eng. Soc., 40:895–904, 1992.

    Google Scholar 

  2. J. Benesty, J. Chen, and Y. Huang, editors. Microphone Array Signal Process. Springer Berlin Heidelberg, March 2008.

    Google Scholar 

  3. A. Bidart and M. Lavandier.Do we need two ears to perceive auditory distance in rooms? In 2nd Pan-American/Iberian Meeting on Acoustics, Cancun, Mexico, 2010.

    Google Scholar 

  4. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, August 2006.

    Google Scholar 

  5. J. Blauert. Spatial Hearing - The psychophysics of human sound localization. Cambridge MA: MIT Press, 1996.

    Google Scholar 

  6. P. Bloom and G. Cain. Evaluation of two-input speech dereverberation techniques. IEEE Intl. Conf. Acoust., Speech, Signal Process., ICASSP ’82., 7:164–167, 1982.

    Google Scholar 

  7. P. J. Bloom and G. D. Gain. Evaluation of two-input speech dereverberation techniques. In IEEE Intl. Conf. Acoust., Speech, Signal Process., New York, 1982.

    Google Scholar 

  8. A. W. Bronkhorst. Localization of real and virtual sound sources. J. Audio Eng. Soc., 98:2452–2553, 1995.

    Google Scholar 

  9. A. W. Bronkhorst and T. Houtgast. Auditory distance perception in rooms. Nature, 397:517–520, 1999.

    Google Scholar 

  10. G. J. Brown and M. Cooke. Computational auditory scene analysis. Comput. Speech and Language, 8:297–336, 1994.

    Google Scholar 

  11. D. S. Brungart, N. I. Durlach, and W. M. Rabinowitz. Auditory localization of nearby sources. ii. localization of a broadband source. J. Acoust. Soc. Amer., 106(4):1956–1968, 1999.

    Google Scholar 

  12. M. C. Büchler. Algorithms for sound classification in hearing instruments. PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, ETH, 2002.

    Google Scholar 

  13. R. A. Butler, E. T. Levy, and W. D. Neff. Apparent distance of sounds recorded in echoic and anechoic chambers. J. Experim. Psychol., 6:745–750, 1980.

    Google Scholar 

  14. J. Chomyszyn. Distance of Sound in Reverberant Fields. PhD thesis, Department of Music, Stanford University, 08/1995 1995.

    Google Scholar 

  15. H. G. Diestel. Zur Schallausbreitung in Reflexionsarmen Räumen. Acustica, 12:113–118, 1962.

    Google Scholar 

  16. N. Durlach. Note on the equalization and cancellation theory of binaural masking level differences. J. Acoust. Soc. Amer., 32:1075–1076, 1960.

    Google Scholar 

  17. K. J. Ebeling. Influence of direct sound on the fluctuations of the room spectral response. J. Acoust. Soc. Am., 68(4):1206–1207, 1980.

    Google Scholar 

  18. E. Georganti, T. May, S. van de Par, A. Harma, and J. Mourjopoulos. Speaker distance detection using a single microphone. IEEE Audio, Speech, Language Process., 19(7):1949–1961, Sept. 2011.

    Google Scholar 

  19. E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Audio, Speech, Language Process. (in press)

    Google Scholar 

  20. E. Georganti, T. Zarouchas, and J. Mourjopoulos. Reverberation analysis via response and signal statistics. In 128th AES convention Proc., London, UK, 2010.

    Google Scholar 

  21. J. A. Gubner. Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press, 2006.

    Google Scholar 

  22. S. Gustafsson, R. Martin, P. Vary. Combined acoustic echo control and noise reduction for hands-free telephony. Signal Process. - Special issue on acoustic echo and noise, control, 64(1):21–32, 1998.

    Google Scholar 

  23. V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass. Signal processing in high-end hearing aids: State of the art, challenges, and future trends. EURASIP J. Appl. Signal Process., 2005:2915–2929, 2005.

    Google Scholar 

  24. A. Härmä. Ambient human-to-human communication. In Handbook of Ambient Intelligence and Smart Environments, pages 795–823. Springer, 2009.

    Google Scholar 

  25. W. Hartmann, B. Rakerd, and A. Koller. Binaural coherence in rooms. Acta Acust United Ac, 91(3):451–462, 2005.

    Google Scholar 

  26. Y. Hioka, K. Niwa, S. Sakauchi, K. Furuya, and Y. Haneda. Estimating direct-to-reverberant energy ratio using d/r spatial correlation matrix model. IEEE Audio, Speech, Language Process., 19(8):2374–2384, nov. 2011.

    Google Scholar 

  27. J. J. Jetzt. Critical distance measurement of rooms from the sound energy spectral response. J. Acoust. Soc. Am., 65:1204–1211, 1979.

    Google Scholar 

  28. M. Jeub, M. Schäfer, and P. Vary. A binaural room impulse response database for the evaluation of dereverberation algorithms. In Intl. Conf. Proc. on Digital Signal Processing (DSP), Santorini, Greece, 2009.

    Google Scholar 

  29. S. Kerber, H. Wittek, and H. Fastl. Ein Anzeigeverfahren für psychoakustische Experimente zur Distanzwahrnehmung. In H. Fastl and M. Fruhmann, editors, Tagungsband Fortschritte der Akustik - DAGA 05, München, volume 1, pages 229–230. Berlin, 2005.

    Google Scholar 

  30. S. Kerber, H. Wittek, H. Fastl, and G. Theile. Experimental investigations into the distance perception of nearby sound sources: Real vs. WFS virtual nearby sources. In D. Cassereau, editor, Proceedings of the 7-th Congrès Français d’ Acoustique/30th Deutsche Jahrestagung für Akustik(CFA/DAGA 04), pages 1041–1042. Strasbourg, France, 2004.

    Google Scholar 

  31. C. H. Knapp and G. C. Carter. The generalized correlation method for estimation of time delay. IEEE Speech Audio Process., 24:320–327, August 1976.

    Google Scholar 

  32. N. Kopčo and B. G. Shinn-Cunningham. Effect of stimulus spectrum on distance perception for nearby sources. J. Acoust. Soc. Amer., 130(3):1530–1541, 2011.

    Google Scholar 

  33. M. Kuster. Estimating the direct-to-reverberant energy ratio from the coherence between coincident pressure and particle velocity. J. Acoust. Soc. Am., 130(6):3781–3787, 2011.

    Google Scholar 

  34. H. Kuttruff. Room Acoustics, 3rd edition. Elsevier, 1991.

    Google Scholar 

  35. S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28:129–137, 1982.

    Google Scholar 

  36. Y. C. Lu and M. Cooke. Binaural distance perception based on direct-to-reverberant energy ratio. In Proc. Intl. Workshop on Acoust. Echo and Noise, Control, September 2008.

    Google Scholar 

  37. Y.-C. Lu and M. Cooke. Binaural estimation of sound source distance via the direct-to-reverberant energy ratio for static and moving sources. IEEE Audio, Speech, Language Process., 18(7):1793–1805, Sept. 2010.

    Google Scholar 

  38. C. Ludvigsen. Schaltungsanordnung für die automatische Regelung von Hörhilfsgeräten [An algorithm for an automatic program selection mode]. In Deutsches Patent Nr. DE43 40817 A1, 1993.

    Google Scholar 

  39. T. May, S. van de Par, and A. Kohlrausch.A probabilistic model for robust localization based on a binaural auditory front-end. IEEE Audio, Speech, Language Process., 19:1–13, 2011.

    Google Scholar 

  40. D. H. Mershon and J. N. Bowers. Absolute and relative cues for the auditory perception of egocentric distance. Perception, 8:311–322, 1979.

    Google Scholar 

  41. D. H. Mershon and E. King. Intensity and reverberation as factors in auditory perception of egocentric distance. Perception & Psychophysics, 18(6):409–415, 1975.

    Google Scholar 

  42. S. Nielsen. Distance perception in hearing. Master’s thesis, Aalborg University, Aalborg, Denmark, 05/1991 1991.

    Google Scholar 

  43. S. H. Nielsen. Auditory distance perception in different rooms. J. Audio Eng. Soc., 41:755–770, 1993.

    Google Scholar 

  44. S. Oh, V. Viswanathan, and P. Papamichalis. Hands-free voice communication in an automobile with a microphone array. In IEEE Intl. Conf. Acoust., Speech, Signal Process., volume 1, pages 281–284, Los Alamitos, CA, USA, 1992.

    Google Scholar 

  45. H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Pattern Anal. Mach. Intell., 27(8):1226–1238, Aug. 2005.

    Google Scholar 

  46. J. W. Philbeck and M. D. H.Knowledge about typical source output influences perceived auditory distance. J. Audio Eng. Soc., 111:1980–1983, 2000.

    Google Scholar 

  47. T. Qu, Z. Xiao, M. Gong, Y. Huang, X. Li, and X. Wu. Distance-dependent head-related transfer functions measured with high spatial resolution using a spark gap. IEEE Audio, Speech, Language Process., 17(6):1124–1132, Aug. 2009.

    Google Scholar 

  48. D. A. Reynolds and R. C. Rose. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE Audio, Speech, Language Process., 3(1):72–83, 1995.

    Google Scholar 

  49. T. Rodemann.A study on distance estimation in binaural localization. In IEEE Intl. Conf. Intel. Robots, Systems, Taipei, Taiwan, 2010.

    Google Scholar 

  50. D. F. Rosenthal and H. G. Okuno, editors. Computational auditory scene analysis. Lawrence Erlbaum Associates Inc., Mahwah, New Jersey, 1998.

    Google Scholar 

  51. N. Sakamoto, T. Gotoh, and Y. Kimura. On “out-of-head localization” in headphone listening. J. Audio Eng. Soc., 24:710–716, 1976.

    Google Scholar 

  52. S. G. Santarelli, N. Kopčo, and B. G. Shinn-Cunningham. Distance judgments of nearby sources in a reverberant room: Effects of stimulus envelope. J. Acoust. Soc. Amer., 107(5):2822–2822, 2000.

    Google Scholar 

  53. M. Schroeder. Die Statistischen Parameter der Frequenzkurven von grossen Räumen (in german). Acustica, (4):594–600, 1954.

    Google Scholar 

  54. M. R. Schroeder. Statistical parameters of the frequency response curves of large rooms. J. Audio Eng. Soc, 35(5):299–306, 1987.

    Google Scholar 

  55. B. Shinn-Cunningham. Localizing sound in rooms. In Proc. ACM SIGRAPH and EUROGRAPHICS Campfire: Acoustic Rendering for Virtual Environments, pages 17–22, May 2001.

    Google Scholar 

  56. B. G. Shinn-Cunningham, N. Kopčo, and T. J. Martin. Localizing nearby sound sources in a classroom: Binaural room impulse responses. J. Acoust. Soc. Amer., 117(5):3100–3115, 2005.

    Google Scholar 

  57. P. Smaragdis and P. Boufounos. Position and trajectory learning for microphone arrays. IEEE Audio, Speech, Language Process., 15:358–368, 2007.

    Google Scholar 

  58. A. Tsilfidis. Signal processing methods for enhancing speech and music signals in reverberant environments. PhD Thesis, University of Patras, 2011.

    Google Scholar 

  59. A. Tsilfidis, A. Westerman, J. Buchholz, E. Georganti, and J. Mourjopoulos. Binaural dereverberation. In J. Blauert, editor, The technology of binaural listening, chapter 14. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  60. J. van Dorp Schuitman. Auditory modelling for assessing room acoustics. PhD thesis, Technical University of Delft, the Netherlands, 2011.

    Google Scholar 

  61. S. Vesa. Sound source distance learning based on binaural signals. In Proc. 2007 Workshop on Applicat. of Signal Process., Audio, Acoust. (WASPAA 2007), pages 271–274, 2007.

    Google Scholar 

  62. S. Vesa. Binaural sound source distance learning in rooms. IEEE Audio, Speech, Language Process., 17:1498–1507, 2009.

    Google Scholar 

  63. F. Völk. Psychoakustische Experimente zur Distanz mittels Wellenfeldsynthese erzeugter Hörereignisse. In Tagungsband Fortschritte der Akustik, DAGA 2010, pages 1065–1066, Berlin, 2010.

    Google Scholar 

  64. F. Völk, U. Mühlbauer, and H. Fastl. Minimum audible distance (MAD) by the example of wave field synthesis. In Tagungsband Fortschritte der Akustik, DAGA 2012, pages 319–320, Darmstadt, 2012.

    Google Scholar 

  65. G. von Békésy. The moon illusion and similar auditory phenomena. Am. J. Psychol., 111:1832–1846, 2002.

    Google Scholar 

  66. D. Wang and G. J. Brown, editors. Computational auditory scene analysis: Principles, Algorithms, and Applications. Wiley-IEEE, October 2006.

    Google Scholar 

  67. P. Zahorik. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc. Amer., 111:1832–1846, 2002.

    Google Scholar 

  68. P. Zahorik. Direct-to-reverberant energy ratio sensitivity. J. Acoust. Soc. Amer., 112(5):2110–2117, 2002.

    Google Scholar 

  69. P. Zahorik, S. D. Brungart, and W. A. Bronkhorst. Auditory distance perception in humans: A summary of past and present research. Acta Acust United Ac, 91:409–420, May/June 2005.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the authors of [47] and S. Vesa for offering the database employed also in [19]. Further, thanks are due to two anonymous reviewers for most valuable comments. This research has been co-financed by the European Union through the European Social Fund, ESF, and the Greek national funds through its Operational Program Education and Lifelong Learning of the National Strategic Reference Framework, NSRF. Research Funding Program: Heracleitus II: Investing-in-Knowledge Society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Georganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Georganti, E., May, T., van de Par, S., Mourjopoulos, J. (2013). Extracting Sound-Source-Distance Information from Binaural Signals. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics