Skip to main content

An Introduction to Binaural Processing

  • Chapter

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

The binaural auditory system performs a number of astonishing functions, such as precise localization of sound sources, analysis of auditory scenes, segregation of auditory streams, providing situational awareness in reflective environments, suppression of reverberance, noise and coloration, enhancement of desired talkers over undesired ones, providing spatial impression and the sense of immersion. These functions are of profound interest for technological application and, hence, the subject of increasing engineering efforts. Generic application areas for binaural algorithms are, among others, aural virtual environments, hearing aids, assessment of product-sound quality, room acoustics, speech technology, audio technology, robotic ears, and tools for research into auditory physiology and aural perception. This introductory chapter starts with a discussion of the performance of binaural hearing and then lists relevant areas for technological application. After a short presentation of the physiological background, signal-processing algorithms as applied to binaural modeling are described. These signal-processing algorithms are manifold, but can be roughly divided into localization models and detection models. Both approaches are discussed in some detail. The chapter is meant to serve as an introduction to the main body of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    among other occasions, at a public lecture at the University of Florida, Gainesville.

References

  1. M. A. Akeroyd and Q. Summerfield. A fully temporal account of the perception of dichotic pitches. Br. J. Audiol., 33:106–107, 1999.

    Google Scholar 

  2. J. Ashmore. Cochlear outer hair cell motility. Physiol. Revs., 88:173–210, 2008.

    Google Scholar 

  3. M. Barron and A. H. Marshall. Spatial impression due to early lateral reflections in concert halls: the derivation of a physical measure. J. Sound Vib., 77:211–232, 1981.

    Google Scholar 

  4. R. Baumgartner, P. Majdak, and B. Laback. Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In J. Blauert, editor, The technology of binaural listening, chapter 4. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  5. L. Bernstein and C. Trahiotis. Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J. Acoust. Soc. Am., 112:1026–1036, 2002.

    Google Scholar 

  6. J. Blauert. Sound localization in the median plane. Acustica, 22:205–213, 1969/70.

    Google Scholar 

  7. J. Blauert. An introduction to binaural technology. In R. H. Gilkey and T. R. Anderson, editors, Binaural and spatial hearing in real and virtual environments, chapter 28, pages 593–609. Lawrence Erlbaum, Mahwah NJ, 1996.

    Google Scholar 

  8. J. Blauert. Spatial hearing: The psychophysics of human sound localization. 2nd, revised ed. MIT Press, Berlin-Heidelberg-New York NY, 1997.

    Google Scholar 

  9. J. Blauert and J. Braasch. Binaural signal processing. In Proc. 19th Intl. Conf. Signal Processing, chapter PID 1877149. IEEExplore, 2011.

    Google Scholar 

  10. J. Blauert, J. Braasch, J. Buchholz, H. Colburn, U. Jekosch, A. Kohlrausch, J. Mourjopoulos, V. Pulkki, and A. Raake. Aural assessement by means of binaural algorithms—the AabbA project. In J. Buchholz, T. Dau, J. Dalsgaard, and T. Poulsen, editors, Binaural processing and spatial hearing, pages 113–124. The Danavox Jubilee Foundation, Ballerup, Denmark, 2009.

    Google Scholar 

  11. J. Blauert and W. Cobben. Some consideration of binaural cross correlation analysis. Acustica, 39:96–104, 1978.

    Google Scholar 

  12. M. Bodden. Binaurale Signalverarbeitung: Modellierung der Richtungserkennung und des Cocktail-Party-Effektes [Binaural signal processing: Modelling the recognition of direction and the cocktail-party effect]. PhD thesis, Ruhr-Univ. Bochum, Bochum, 1992.

    Google Scholar 

  13. M. Bodden. Modeling human sound-source localization and the Cocktail-Party Effect. Act. Acust./Acustica, 1:43–55, 1993.

    Google Scholar 

  14. J. Braasch. Auditory localization and detection in multiple-sound-source scenarios. PhD thesis, Ruhr-Univ. Bochum, Bochum, 2001.

    Google Scholar 

  15. J. Braasch. Localization in the presence of a distracter and reverberation in the frontal horizontal plane: II. Model algorithms. Act. Acust./Acustica, 88:956–969, 2002.

    Google Scholar 

  16. J. Braasch. Localization in the presence of a distracter and reverberation in the frontal horizontal plane: III. The role of interaural level differences. Act. Acust./Acustica, 89:674–692, 2003.

    Google Scholar 

  17. J. Braasch. Modeling of binaural hearing. In J. Blauert, editor, Communication acoustics, pages 75–108. Springer Verlag, 2005.

    Google Scholar 

  18. J. Braasch and J. Blauert. Stimulus-dependent adaptation of inhibitory elements in precedence-effect models. In Proc. Forum Acusticum 2011, pages 2115–2120, Aalborg Denmark, 2011.

    Google Scholar 

  19. J. Braasch, S. Clapp, A. Pars, T. Pastore, and N. Xiang. A binaural model that analyses acoustic spaces and stereophonic reproduction systems by utilizing head rotations. In J. Blauert, editor, The technology of binaural listening, chapter 8. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  20. J. Breebaart. Modeling binaural signal detection. PhD thesis, Techn. Univ. Eindhoven, 2001.

    Google Scholar 

  21. J. Breebaart and C. Faller. Spatial audio processing: MPEG surround and other applications. Wiley, Chichester, 2008.

    Google Scholar 

  22. J. Breebaart, S. van de Par, and A. Kohlrausch. The contribution of static and dynamically varying ITDs and IIDs to binaural detection. J. Acoust. Soc. Am., 106:979–992, 1999.

    Google Scholar 

  23. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. Model structure. J. Acoust. Soc. Am., 110:1074–1088, 2001.

    Google Scholar 

  24. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. Predictions as a function of spectral stimulus parameters. J. Acoust. Soc. Am., 110:1089–1104, 2001.

    Google Scholar 

  25. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. Predictions as a function of temporal stimulus parameters. J. Acoust. Soc. Am., 110:1105–1117, 2001.

    Google Scholar 

  26. A. Bregman. Auditory scene analysis: The perceptual organization of sound. MIT Press, 1990.

    Google Scholar 

  27. A. Bronkhorst and R. Plomp. Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J. Acoust. Soc. Am., 92:3132–3139, 1992.

    Google Scholar 

  28. M. Brüggen. Klangverfärbungen durch Rückwürfe und ihre auditive und instrumentelle Kompensation [Sound coloration due to reflections and its auditory and instrumental compensation]. dissertation.de-Verlag im Internet, Berlin, 2001.

    Google Scholar 

  29. D. Brungart and W. Rabinowtz. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am., 106:1465–1479, 1999.

    Google Scholar 

  30. C. E. Carr and M. Konishi. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neuroscience, 10(10):3227–3246, 1990.

    Google Scholar 

  31. E. C. Cherry and B. M. A. Sayers. “Human ‘cross-correlator’ ”—A technique for measuring certain parameters of speech perception. J. Acoust. Soc. Am., 28(5):889–895, 1956.

    Google Scholar 

  32. H. S. Colburn and N. I. Durlach. Models of binaural interaction. In E. Carterette and M. Friedman, editors, Handb. of perception, volume IV, pages 467–518. Academic Press, New York, 1978.

    Google Scholar 

  33. J. Culling, M. Lavandier, and S. Jelfs. Predicting binaural speech intelligibility in architectural acoustics. In J. Blauert, editor, The technology of binaural listening, chapter 16. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  34. J. F. Culling and Q. Summerfield. Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay. J. Acoust. Soc. Am., 98:785–797, 1995.

    Google Scholar 

  35. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the “effective” signal processing in the auditory system: I. Model structure. J. Acoust. Soc. Am., 99:3615–3622, 1996.

    Google Scholar 

  36. E. E. David, N. Guttman, and W. A. von Bergeijk. Binaural interaction of high-frequency complex stimuli. J. Acoust. Soc. Am., 31:774–782, 1959.

    Google Scholar 

  37. M. Dietz, S. D. Ewert, and V. Hohmann. Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication, 53(5):592–605, 2011.

    Google Scholar 

  38. M. Dietz, S. D. Ewert, V. Hohmann, and B. Kollmeier. Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Research, 1220:234–245, 2008.

    Google Scholar 

  39. R. M. Dizon and H. S. Colburn. The influence of spectral, temporal, and interaural stimulus variations on the precedence effect. J. Acoust. Soc. Am., 119:2947–2964, 2006.

    Google Scholar 

  40. R. H. Domnitz and H. S. Colburn. Analysis of binaural detection models for dependence on interaural target parameters. J. Acoust. Soc. Am., 59:598–601, 1976.

    Google Scholar 

  41. N. I. Durlach. Note on the Equalization and Cancellation theory of binaural masking level differences. J. Acoust. Soc. Am., 32:1075–1076, 1960.

    Google Scholar 

  42. N. I. Durlach. Equalization and cancellation theory of binaural masking-level differences. J. Acoust. Soc. Am., 35:1206–1218, 1963.

    Google Scholar 

  43. N. I. Durlach. Binaural signal detection: Equalization & cancellation theory. In J. Tobias, editor, Foundations of modern auditory theory, volume II, pages 369–462. Academic Press, New York, London, 1972.

    Google Scholar 

  44. J. Eggermont, A. Aertsen, D. J. Hermes, and P. Johannesma. Spectro-temporal characterization of auditory neurons: Redundant or necessary? Hearing Research, 5:109–121, 1981.

    Google Scholar 

  45. C. Faller and J. Merimaa. Source localization in complex listening situations: Selection of binaural cues based on interaural coherence. J. Acoust. Soc. Am., 116:3075–3089, 2004.

    Google Scholar 

  46. R. L. Freyman, P. M. Zurek, U. Balakrishnan, and Y. C. Chiang. Onset dominance in lateralization. J. Acoust. Soc. Am., 101:1649–1659, 1997.

    Google Scholar 

  47. W. Gaik. Combined evaluation of interaural time and intensity differences: Psychoacoustic results and computer modeling. J. Acoust. Soc. Am., 94:98–110, 1993.

    Google Scholar 

  48. D. Green. On the similarity of two theories of comodulation masking release. J. Acoust. Soc. Am., 91:1769, 1992.

    Google Scholar 

  49. B. Grothe, M. Pecka, and D. McAlpine. Mechanisms of sound localization in mammals. Physiological Reviews, 90(3):983–1012, 2010.

    Google Scholar 

  50. E. Hafter. Binaural adaptation and the effectiveness of a stimulus beyond its onset. In R. H. Gilkey and T. R. Anderson, editors, Binaural and spatial hearing in real and virtual environments, pages 211–232. Lawrence Erlbaum, Mahwah, NJ, 1997.

    Google Scholar 

  51. G. G. Harris. Binaural interaction of impulsive stimuli and pure tones. J. Acoust. Soc. Am., 32:685–692, 1960.

    Google Scholar 

  52. K. Hartung. Modellalgorithmen zum Richtungshören, basierend auf Ergebnissen psychoakustischer und neurophysiologischer Experimente mit virtuellen Schallquellen [Model algorithms regarding directional hearing, based on psychoacoustic and neurophysiological experiments with virtual sound sources]. PhD thesis, Ruhr-Univ. Bochum, Bochum, 1998.

    Google Scholar 

  53. J. He and Y. Yu. Role of descending control in the auditory pathway. In A. Rees and A. Palmer, editors, The Oxford handbook of auditory science: The auditory brain, pages 247–268. Oxford Univ. Press, 2010.

    Google Scholar 

  54. I. J. Hirsh. The influence of interaural phase on interaural summation and inibition. J. Acoust. Soc. Am., 20:536–544, 1948.

    Google Scholar 

  55. I. Holube, M. Kinkel, and B. Kollmeier. Binaural and monaural auditory filter bandwidths and time constants in probe tone detection experiments. J. Acoust. Soc. Am., 104:2412–2425, 1998.

    Google Scholar 

  56. D. Irvine. Physiology of the auditory brainstem. In A. Popper and R. Fay, editors, The mammalian auditory pathway: Neurophysiology, pages 153–232. Springer, 1992.

    Google Scholar 

  57. J. Janko, T. Anderson, and R. Gilkey. Using neural networks to evaluate the viability of monaural and inter-aural cues for sound localization. In R. H. Gilkey and T. R. Anderson, editors, Binaural and spatial hearing in real and virtual environments, pages 557–570. Lawrence Erlbaum Associates, Mahwah, NJ, 1997.

    Google Scholar 

  58. L. A. Jeffress. A place theory of sound localization. J. Comp. Physiol. Psychol., 41:35–39, 1948.

    Google Scholar 

  59. S. Jelfs. Modelling the cocktail party: A binaural model for speech intelligibility in noise. PhD thesis, Cardiff University, 2011.

    Google Scholar 

  60. M. L. Jepsen, S. D. Ewert, and T. Dau. A computational model of human auditory signal processing and perception. J. Acoust. Soc. Am., 124:422–438, 2008.

    Google Scholar 

  61. P. Joris. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. J Neurophysiol, 76:2137–2156, 1996.

    Google Scholar 

  62. P. Joris and T. Yin. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol, 73:1043–1062, 1995.

    Google Scholar 

  63. H. Keller. Letter to Dr. John Kerr Love of March 31. In J. K. Love, editor, Helen Keller in Scotland, a personal record written by herself. Methuen, London, 1910.

    Google Scholar 

  64. A. Kohlrausch. Psychoakustische Untersuchungen spektraler Aspekte beim binauralen Hören [Psychoacoustic investigations of spectral effects in binaural hearing]. PhD thesis, Univ. of Göttingen, 1984.

    Google Scholar 

  65. A. Kohlrausch. Binaural masking experiments using noise maskers with frequency-dependent interaural phase differences. II: Influence of frequency and interaural-phase uncertainty. J. Acoust. Soc. Am., 88:1749–1756, 1990.

    Google Scholar 

  66. B. Kollmeier and R. H. Gilkey. Binaural forward and backward masking: Evidence for sluggishness in binaural detection. J. Acoust. Soc. Am., 87:1709–1719, 1990.

    Google Scholar 

  67. E. H. A. Langendijk and A. W. Bronkhorst. Contribution of spectral cues to human sound localization. J. Acoust. Soc. Am., 112(4):1583–1596, 2002.

    Google Scholar 

  68. A. Langhans and A. Kohlrausch. Differences in auditory performance between monaural and diotic conditions. I: Masked thresholds in frozen noise. J. Acoust. Soc. Am., 91:3456–3470, 1992.

    Google Scholar 

  69. N. Le Goff. Processing interaural differences in lateralization and binaural signal detection. PhD thesis, Techn. Univ. Eindhoven, The Netherland, 2010.

    Google Scholar 

  70. J. Licklider. The influence of interaural phase relations upon the masking of speech by white noise. J. Acoust. Soc. Am., 20:150–159, 1948.

    Google Scholar 

  71. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization of stationary signals. J. Acoust. Soc. Am., 80:1608–1622, 1986.

    Google Scholar 

  72. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. J. Acoust. Soc. Am., 80:1623–1630, 1986.

    Google Scholar 

  73. R. Litovsky, H. Colburn, W. Yost, and S. Guzman. The precedence effect. J. Acoust. Soc. Am., 106:2219–2236, 1999.

    Google Scholar 

  74. Lord Rayleigh. On our perception of sound direction. Phil. Mag., 13:214–232, 1907.

    Google Scholar 

  75. T. May, S. van de Par, and A. Kohlrausch. Binaural localization and detection of speakers in complex acoustic scenes. In J. Blauert, editor, The technology of binaural listening, chapter 15. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  76. D. McAlpine. Creating a sense of auditory space. J. Physiol., 566(1):21–28, 2005.

    Google Scholar 

  77. D. McAlpine and B. Grothe. Sound localisation and delay lines - do mammals fit the model? Trends in Neuroscience, 26:347–350, 2003.

    Google Scholar 

  78. D. McAlpine, D. Jiang, and A. R. Palmer. A neural code for low-frequency sound localization in mammals. Nature Neuroscience, 4(4):396–401, 2001.

    Google Scholar 

  79. A. W. Mills. On the minimum audible angle. J. Acoust. Soc. Am., 30:237–246, 1958.

    Google Scholar 

  80. B. C. J. Moore. An introduction to the psychology of hearing. Emerald Group, 5th edition, 2003.

    Google Scholar 

  81. J. Nix and V. Hohmann. Sound source localization in real sound fields based on empirical statistics of interaural parameters. J. Acoust. Soc. Am., 119:463–479, 2006.

    Google Scholar 

  82. M. H. Park. Models of binaural hearing for sound lateralisation and localisation. PhD thesis, Univ. Southampton, 2007.

    Google Scholar 

  83. M. Pecka, A. Brand, O. Behrend, and B. Grothe. Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. J. Neuroscience, 28(27):6914–6925, 2008.

    Google Scholar 

  84. V. Pulkki and T. Hirvonen. Functional count-comparison model for binaural decoding. Act. Acust./Acustica, 95(5):883–900, 2009.

    Google Scholar 

  85. J. Raatgever. On the binaural processing of stimuli with different interaural phase relations. PhD thesis, Techn. Univ. Delft, 1980.

    Google Scholar 

  86. M. Reed and J. Blum. A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust. Soc. Am., 88:1442–1453, 1990.

    Google Scholar 

  87. N. Roman, S. Srinivasan, and D. Wang. Binaural segregation in multisource reverberant environments. J. Acoust. Soc. Am., 120:4040–4051, 2006.

    Google Scholar 

  88. N. Roman and D. Wang. Binaural tracking of multiple moving sources. IEEE Transactions on Audio, Speech, and Language Processing, 16:728–739, 2008.

    Google Scholar 

  89. S. Shamma. Speech processing in the auditory system II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J. Acoust. Soc. Am., 78:1622–1632, 1985.

    Google Scholar 

  90. B. C. Skottun, T. M. Shackleton, R. H. Arnott, and A. R. Palmer. The ability of inferior colliculus neurons to signal differences in interaural delay. Proc. National Acad. Sciences, 98:14050–14054, 2001.

    Google Scholar 

  91. P. Søndergaard and P. Majdak. The auditory modeling toolbox. In J. Blauert, editor, The technology of binaural listening, chapter 2. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  92. L. Squire, F. Bloom, and S. McConnell. Fundamental neuroscience. Academic Press, 2002.

    Google Scholar 

  93. M. Stamm and M. Altinsoy. Employing binaural-proprioceptive interaction in human-machine interfaces. In J. Blauert, editor, The technology of binaural listening, chapter 17. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  94. R. Stern and H. Colburn. Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J. Acoust. Soc. Am., 64:127–140, 1978.

    Google Scholar 

  95. R. M. Stern and C. Trahiotis. Models of binaural interaction. In B. C. J. Moore, editor, Hearing, pages 347–386. Academic Press, New York, 1995.

    Google Scholar 

  96. R. M. Stern, D. L. Wang, and G. J. Brown. Binaural sound localization. In D. Wang and G. Brown, editors, Computational auditory scene analysis: Principles, algorithms, and applications, pages 147–185. IEEE Press, 2006.

    Google Scholar 

  97. R. M. Stern, A. S. Zeiberg, and C. Trahiotis. Lateralization of complex binaural stimuli: A weighted-image model. J. Acoust. Soc. Am., 84:156–165, 1988.

    Google Scholar 

  98. N. Suga, Y. Zhang, J. Olsen, and J. Yan. Modulation of frequency tuning of thalamic and midbrain neurons and cochlear hair cells by the descending auditory system in the mustached bat. In M. V. C. Moss and J. Thomas, editors, Echolocation in bats and dolphins, pages 214–221. Univ. of Chicago Press, 2002.

    Google Scholar 

  99. A. Tsilfidis, A. Westermann, J. Buchholz, E. Georganti, and J. Mourjopoulos. Binaural dereverberation. In J. Blauert, editor, The technology of binaural listening, chapter 14. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  100. S. van de Par and A. Kohlrausch. Dependence of binaural masking level differences on center frequency, masker bandwidth and interaural parameters. J. Acoust. Soc. Am., 106:1940–1947, 1999.

    Google Scholar 

  101. S. van de Par, A. Kohlrausch, J. Breebaart, and M. McKinney. Discrimination of different temporal envelope structures of diotic and dichotic target signals within diotic wide-band noise. In D. Pressnitzer, A. de Cheveigné, S. McAdams, and L. Collet, editors, Auditory signal processing: physiology, psychoacoustics, and models, pages 398–404. Springer, New York, 2005.

    Google Scholar 

  102. J. van Dorp Schuitman. Auditory modelling for assessing room acoustics. PhD thesis, Techn. Univ. Delft, 2011.

    Google Scholar 

  103. E. Vincent, R. Gribonval, and C. Févotte. Performance measurement in blind audio source separation. IEEE Transaction on Audio, Speech, and Language Processing, 14:1462–1469, 2006.

    Google Scholar 

  104. H. von Hövel. Zur Bedeutung der Übertragungseigenschaften des Außenohres sowie des binauralen Hörsystems bei gestörter Sprachübertragung [On the relevance of the transfer properties of the external ear and the binaural auditory system for corrupted speech transmission]. PhD thesis, RWTH Aachen, 1984.

    Google Scholar 

  105. F. Wightman and D. Kistler. Monaural sound localization revisited. J. Acoust. Soc. Am., 101:1050–1063, 1997.

    Google Scholar 

  106. E. Young. Level and spectrum. In A. Rees and A. Palmer, editors, The Oxford handb. of auditory science: The auditory brain, pages 93–124. Oxford University Press, 2010.

    Google Scholar 

  107. P. Zakarauskas and M. Cynader. A computational theory of spectral cue localization. J. Acoust. Soc. Am., 94:1323–1331, 1993.

    Google Scholar 

  108. C. Zerbs. Modeling the effective binaural signal processing in the auditory system. PhD thesis, Carl-von-Ossietzky Univ. Oldenburg, 2000.

    Google Scholar 

  109. P. M. Zurek. A note on onset effects in binaural hearing. J. Acoust. Soc. Am., 93:1200–1201, 1993.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Jelfs, T. Pastore and two anonymous reviewers for their valuable comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kolossa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kohlrausch, A., Braasch, J., Kolossa, D., Blauert, J. (2013). An Introduction to Binaural Processing. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics