Skip to main content

The Blossom of Finite Semantic Trees

  • Chapter
Programming Logics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7797))

Abstract

Automated deduction in first-order logic finds almost all its roots in Herbrand’s work, starting with Herbrand’s interpretations, a clausal calculus, and rules for unification. J.A. Robinson’s key contribution was the formulation of resolution and its completeness proof, in which semantic trees were semi-apparent. Robinson and Wos introduced the specific treatment of equality commonly called paramodulation. The systematic introduction of orderings to cut the search space is due to Lankford. Kowalski studied in more details the case of Horn clauses, while Peterson gave the first proof that paramodulation inside variables was superfluous, assuming a term ordering order-isomorphic to the natural numbers. Knuth studied the case of equality unit clauses, under the name of completion. All these works were done by using standard proof techniques, including semantic trees [Kow69].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akers, S.B.: Functional testing with binary decision diagrams. In: Eighth Annual Conference on Fault-Tolerant Computing, pp. 75–82 (1978)

    Google Scholar 

  2. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs and proof orderings. Journal of the ACM 41(2), 236–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving, vol. I, ch. 2, pp. 19–99. North-Holland (2001), [RV01b]

    Google Scholar 

  4. Bofill, M., Godoy, G.: On the Completeness of Arbitrary Selection Strategies for Paramodulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 951–962. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodulation and Superposition. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 462–476. Springer, Heidelberg (1992)

    Google Scholar 

  6. Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with non-monotonic orderings. In: Proc. 14th IEEE Symposium on Logics in Computer Science (LICS 1999), pp. 225–233. IEEE Computer Society Press (1999)

    Google Scholar 

  7. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Computer Science Classics. Academic Press (1973)

    Google Scholar 

  8. de Nivelle, H.: Ordering Refinements of Resolution. PhD thesis, Technische Universiteit Delft (1995)

    Google Scholar 

  9. Goubault-Larrecq, J.: Deciding \(\mathcal H_1\) by resolution. Information Processing Letters (2005) (to appear)

    Google Scholar 

  10. Jean Goubault-Larrecq, Muriel Roger, and Kumar Neeraj Verma. Abstraction and resolution modulo AC: How to verify Diffie-Hellman-like protocols automatically. J. Logic and Algebraic Programming (2004) (to appear)

    Google Scholar 

  11. Hsiang, J., Rusinowitch, M.: A New Method for Establishing Refutational Completeness in Theorem Proving. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 141–152. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  12. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strategies: The transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyner Jr., W.H.: Resolution strategies as decision procedures. Journal of the ACM 23(3), 398–417 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kowalski, R.: Semantic trees in automatic theorem-proving. Machine Intelligence 4, 86–101 (1969)

    MATH  Google Scholar 

  15. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.) Proc. 17th Intl. Joint Conf. Artificial Intelligence, vol. 1, pp. 611–617. Morgan Kaufmann (August 2001)

    Google Scholar 

  16. Alan Robinson, J., Voronkov, A. (eds.): Handbook of Automated Reasoning. North-Holland (2001)

    Google Scholar 

  17. Seidl, H., Verma, K.N.: Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols with Single Blind Copying. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 79–94. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goubault-Larrecq, J., Jouannaud, JP. (2013). The Blossom of Finite Semantic Trees. In: Voronkov, A., Weidenbach, C. (eds) Programming Logics. Lecture Notes in Computer Science, vol 7797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37651-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37651-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37650-4

  • Online ISBN: 978-3-642-37651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics