Abstract
Automated deduction in first-order logic finds almost all its roots in Herbrand’s work, starting with Herbrand’s interpretations, a clausal calculus, and rules for unification. J.A. Robinson’s key contribution was the formulation of resolution and its completeness proof, in which semantic trees were semi-apparent. Robinson and Wos introduced the specific treatment of equality commonly called paramodulation. The systematic introduction of orderings to cut the search space is due to Lankford. Kowalski studied in more details the case of Horn clauses, while Peterson gave the first proof that paramodulation inside variables was superfluous, assuming a term ordering order-isomorphic to the natural numbers. Knuth studied the case of equality unit clauses, under the name of completion. All these works were done by using standard proof techniques, including semantic trees [Kow69].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akers, S.B.: Functional testing with binary decision diagrams. In: Eighth Annual Conference on Fault-Tolerant Computing, pp. 75–82 (1978)
Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs and proof orderings. Journal of the ACM 41(2), 236–276 (1994)
Bachmair, L., Ganzinger, H.: Resolution Theorem Proving, vol. I, ch. 2, pp. 19–99. North-Holland (2001), [RV01b]
Bofill, M., Godoy, G.: On the Completeness of Arbitrary Selection Strategies for Paramodulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 951–962. Springer, Heidelberg (2001)
Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodulation and Superposition. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 462–476. Springer, Heidelberg (1992)
Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation with non-monotonic orderings. In: Proc. 14th IEEE Symposium on Logics in Computer Science (LICS 1999), pp. 225–233. IEEE Computer Society Press (1999)
Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Computer Science Classics. Academic Press (1973)
de Nivelle, H.: Ordering Refinements of Resolution. PhD thesis, Technische Universiteit Delft (1995)
Goubault-Larrecq, J.: Deciding \(\mathcal H_1\) by resolution. Information Processing Letters (2005) (to appear)
Jean Goubault-Larrecq, Muriel Roger, and Kumar Neeraj Verma. Abstraction and resolution modulo AC: How to verify Diffie-Hellman-like protocols automatically. J. Logic and Algebraic Programming (2004) (to appear)
Hsiang, J., Rusinowitch, M.: A New Method for Establishing Refutational Completeness in Theorem Proving. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 141–152. Springer, Heidelberg (1986)
Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strategies: The transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)
Joyner Jr., W.H.: Resolution strategies as decision procedures. Journal of the ACM 23(3), 398–417 (1976)
Kowalski, R.: Semantic trees in automatic theorem-proving. Machine Intelligence 4, 86–101 (1969)
Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.) Proc. 17th Intl. Joint Conf. Artificial Intelligence, vol. 1, pp. 611–617. Morgan Kaufmann (August 2001)
Alan Robinson, J., Voronkov, A. (eds.): Handbook of Automated Reasoning. North-Holland (2001)
Seidl, H., Verma, K.N.: Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols with Single Blind Copying. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 79–94. Springer, Heidelberg (2005)
Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Goubault-Larrecq, J., Jouannaud, JP. (2013). The Blossom of Finite Semantic Trees. In: Voronkov, A., Weidenbach, C. (eds) Programming Logics. Lecture Notes in Computer Science, vol 7797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37651-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37651-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37650-4
Online ISBN: 978-3-642-37651-1
eBook Packages: Computer ScienceComputer Science (R0)