Compiling Logics

  • Mihai Codescu
  • Fulya Horozal
  • Aivaras Jakubauskas
  • Till Mossakowski
  • Florian Rabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7841)


We present an architecture that permits compiling declarative logic specifications (given in some type theory like LF) into implementations of that logic within the Heterogeneous Tool Set Hets. The central contributions are the use of declaration patterns for singling out a suitable subset of signatures for a particular logic, and the automatic generation of datatypes and functions for parsing and static analysis of declaratively specified logics.


Predicate Symbol Logical Framework Concrete Syntax Signature Morphism Propositional Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P., Sannella, D., Tarlecki, A.: CASL: The Common Algebraic Specification Language. Theoretical Computer Science 286(2), 153–196 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004),
  3. 3.
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project Abstract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer, W.M., Rabe, F., Urban, J. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 289–291. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F., Sojakova, K.: Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In: Mossakowski, T., Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 139–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Goguen, J., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13, 274–307 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Goguen, J.A., Tracz, W.: An Implementation-Oriented Semantics for Module Composition. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, ch. 11, pp. 231–263. Cambridge University Press, New York (2000)Google Scholar
  9. 9.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic representations. Annals of Pure and Applied Logic 67, 113–160 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Horozal, F.: Logic translations with declaration patterns (2012),
  12. 12.
    Jones, S.P., Jones, M., Meijer, E.: Type classes: exploring the design space. In: Proceedings of the ACM Haskell Workshop (1997)Google Scholar
  13. 13.
    Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs - Proof Management for Structured Specifications. Journal of Logic and Algebraic Programming 67(1-2), 114–145 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  16. 16.
    Rabe, F.: The MMT System (2008),
  17. 17.
    Rabe, F.: A Logical Framework Combining Model and Proof Theory. Mathematical Structures in Computer Science (to appear, 2013),
  18. 18.
    Rabe, F., Kohlhase, M.: A Scalable Module System (2011),
  19. 19.
    Rabe, F., Kohlhase, M.: A Web-Scalable Module System for Mathematical Theories (2011) (under review),
  20. 20.
    Rabe, F., Schürmann, C.: A Practical Module System for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Mihai Codescu
    • 1
  • Fulya Horozal
    • 3
  • Aivaras Jakubauskas
    • 3
  • Till Mossakowski
    • 2
  • Florian Rabe
    • 3
  1. 1.Friedrich-Alexander UniversityErlangen-NürnbergGermany
  2. 2.DFKI GmbH BremenGermany
  3. 3.Computer ScienceJacobs University BremenGermany

Personalised recommendations