Semantics of the Distributed Ontology Language: Institutes and Institutions

  • Till Mossakowski
  • Oliver Kutz
  • Christoph Lange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7841)


The Distributed Ontology Language (DOL) is a recent development within the ISO standardisation initiative 17347 Ontology Integration and Interoperability (OntoIOp). In DOL, heterogeneous and distributed ontologies can be expressed, i.e. ontologies that are made up of parts written in ontology languages based on various logics. In order to make the DOL meta-language and its semantics more easily accessible to the wider ontology community, we have developed a notion of institute which are like institutions but with signature partial orders and based on standard set-theoretic semantics rather than category theory. We give an institute-based semantics for the kernel of DOL and show that this is compatible with institutional semantics. Moreover, as it turns out, beyond their greater simplicity, institutes have some further surprising advantages over institutions.


Partial Order Description Logic Category Theory Conservative Extension Common Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–140 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beisswanger, E., Schulz, S., Stenzhorn, H., Hahn, U.: BioTop: An upper domain ontology for the life sciences - a description of its current structure, contents, and interfaces to OBO ontologies. Applied Ontology 3(4), 205–212 (2008)Google Scholar
  4. 4.
    Carnielli, W.A., Coniglio, M., Gabbay, D.M., Gouveia, P., Sernadas, C.: Analysis and synthesis of logics: how to cut and paste reasoning systems. Applied logic series. Springer (2008)Google Scholar
  5. 5.
    Common Logic Working Group. Common Logic: Abstract syntax and semantics. Technical report (2003),
  6. 6.
    David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The alignment API 4.0. Semantic Web 2(1), 3–10 (2011)Google Scholar
  7. 7.
    Diaconescu, R.: Grothendieck institutions. Applied Categorical Structures 10, 383–402 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–213. North-Holland, Amsterdam (1969)Google Scholar
  9. 9.
    Goguen, J., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13, 274–307 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39, 95–146 (1992); Predecessor in: Clarke, E., Kozen, D. (eds.): Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)Google Scholar
  11. 11.
    Goguen, J.A., Tracz, W.: An implementation-oriented semantics for module composition. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based Systems, ch. 11, pp. 231–263. Cambridge University Press, New York (2000)Google Scholar
  12. 12.
    Guerra, S.: Composition of Default Specifications. J. Log. Comput. 11(4), 559–578 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Horrocks, I., Kutz, O., Sattler, U.: Even More Irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (June 2006)Google Scholar
  14. 14.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisation. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 25–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kutz, O., Mossakowski, T.: Conservativity in Structured Ontologies. In: 18th European Conf. on Artificial Intelligence (ECAI 2008), Patras, Greece. IOS Press (2008)Google Scholar
  16. 16.
    Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis 4(2), 255–333 (2010); Special Issue on ‘Is Logic Universal?’MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kutz, O., Normann, I., Mossakowski, T., Walther, D.: Chinese Whispers and Connected Alignments. In: Proc. of the 5th International Workshop on Ontology Matching (OM 2010), 9th International Semantic Web Conference, ISWC 2010, Shanghai, China (November 7, 2010)Google Scholar
  18. 18.
    Lange, C., Mossakowski, T., Kutz, O.: LoLa: A Modular Ontology of Logics, Languages, and Translations. In: Schneider, T., Walther, D. (eds.) Modular Ontologies, Aachen. CEUR Workshop Proceedings, vol. 875 (2012)Google Scholar
  19. 19.
    Lifschitz, V.: Circumscription. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 297–352. Oxford University Press (1994)Google Scholar
  20. 20.
    Lutz, C., Walther, D., Wolter, F.: Conservative Extensions in Expressive Description Logics. In: Proceedings of IJCAI 2007, pp. 453–458. AAAI Press (2007)Google Scholar
  21. 21.
    Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\mathcal{EL}\). Journal of Symbolic Computation 45(2), 194–228 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  23. 23.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable 18. Laboratory for Applied Ontology – ISTC-CNR (December 2003)Google Scholar
  24. 24.
    McCarthy, J.: Circumscription - A Form of Non-Monotonic Reasoning. Artif. Intell. 13(1-2), 27–39 (1980)zbMATHCrossRefGoogle Scholar
  25. 25.
    Meseguer, J.: General logics. In: Logic Colloquium 1987, pp. 275–329. North Holland (1989)Google Scholar
  26. 26.
    Mossakowski, T.: HetCASL - Heterogeneous Specification. Language Summary (2004),
  27. 27.
    Mossakowski, T., Kutz, O.: The Onto-Logical Translation Graph. In: Modular Ontologies—Proceedings of the Fifth International Workshop (WoMO 2011). Frontiers in Artificial Intelligence and Applications, vol. 230, pp. 94–109. IOS Press (2011)Google Scholar
  28. 28.
    Mossakowski, T., Lange, C., Kutz, O.: Three Semantics for the Core of the Distributed Ontology Language. In: Donnelly, M., Guizzardi, G. (eds.) FOIS 2012: 7th International Conference on Formal Ontology in Information Systems, pp. 337–352. IOS Press, Amsterdam (2012) (Best paper award),
  29. 29.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. EATCS Monographs on theoretical computer science. Springer (2012)Google Scholar
  34. 34.
    Scott, D.: Rules and derived rules. In: Stenlund, S. (ed.) Logical Theory and Semantic Analysis, pp. 147–161. Reidel (1974)Google Scholar
  35. 35.
    Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., Mungall, C.J., Neuhaus, F., Rector, A., Rosse, C.: Relations in biomedical ontologies. Genome Biology 6, R46 (2005)Google Scholar
  36. 36.
    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems 2, 1998. Studies in Logic and Computation, pp. 337–360. Research Studies Press (2000)Google Scholar
  37. 37.
    Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing Ontology Alignment and its Operations with Category Theory. In: Bennett, B., Fellbaum, C. (eds.) Proceedings of the Fourth International Conference on Formal Ontology in Information Systems (FOIS 2006). Frontiers in Artificial Intelligence and Applications, vol. 150, pp. 277–288. IOS Press (November 2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Till Mossakowski
    • 1
    • 3
  • Oliver Kutz
    • 1
  • Christoph Lange
    • 1
    • 2
  1. 1.Research Center on Spatial CognitionUniversity of BremenGermany
  2. 2.School of Computer ScienceUniversity of BirminghamUK
  3. 3.DFKI GmbH BremenGermany

Personalised recommendations