Skip to main content

Schmerztherapie von Skelettmetastasen mittels ionisierender Strahlung

  • Chapter
Praktische Schmerzmedizin

Zusammenfassung

Die perkutane Strahlentherapie ist eine wirksame Maßnahme zur Reduktion der lokalen inflammatorischen Reaktion sowie zur Inaktivierung proliferativer Eigenschaften des Tumors. Daher verfügt sie über eine messbare Effektivität bei Schmerzen, die durch Knochenmetastasen hervorgerufen werden (Adamietz u. Diel 2003, Arcangeli et al. 1998, Blum et al. 2003).

Knochenmetastasen entstehen durch hämatogene Tumorzelldissemination in das Knochenmark und sind eigentlich Metastasen des Knochenmarkes. Die dort wachsenden Tumorzellen können die Skelett- und Calciumhomöostase stören und sekundäre Knochenveränderungen hervorrufen, die als Tumorosteopathien bezeichnet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

■ Zu 17.1

  • Adamietz IA, Diel IJ (2003) Bisphosphonate. Onkologe 9:495–509

    Google Scholar 

  • Adamietz IA, Schneider O, Müller RP (2002) Results of a nationwide survey on radiotherapy of bone metastases in Germany. Strahlenther Onkol 178:531–536

    PubMed  Google Scholar 

  • Algur E, Macklis RM, Hafeli UO (2005) Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines. Int J Radiat Oncol Biol Phys 61:535–542

    PubMed  CAS  Google Scholar 

  • Arcangeli G, Giovinazzo G, Saracino B, et al. (1998) Radiation therapy in the management of symptomatic bone metastases:the effect of total dose and histology on pain relief and response duration. Int J Radiat Oncol Biol Phys 42:1119–1126

    PubMed  CAS  Google Scholar 

  • Blitzer PH (1985) Reanalysis of the RTOG study of the palliation of symptomatic osseous metastasis. Cancer 55:1468–1472

    PubMed  CAS  Google Scholar 

  • Blum RH, Novetsky D, Shasha D, et al. (2003) The multidisciplinary approach to bone metastases. Oncology (Williston Park) 17:845–857; discussion 862–843, 867

    Google Scholar 

  • Bone-Trial-Working-Party (1999) 8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain:randomised comparison with a multifraction schedule over 12 months of patient follow-up. Bone Pain Trial Working Party. Radiother Oncol 52:111–121

    Google Scholar 

  • Böttcher HD, Adamietz IA (1997) Klinik der Skelettmetastasen. Zuckschwerdt, München Bern Wien New York

    Google Scholar 

  • Chow E, Zeng L, Salvo N, et al. (2012) Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 24:112–124

    CAS  Google Scholar 

  • Coleman R, Gnant M (2009) New results from the use of bisphosphonates in cancer patients. Curr Opin Support Palliat Care 3:213–218

    PubMed  Google Scholar 

  • Dempster DW, Lambing CL, Kostenuik PJ, et al. (2012). Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis:a review of preclinical and clinical data. Clin Ther 34 :521–536

    PubMed  CAS  Google Scholar 

  • Enright K, Clemons M, Chow E (2004) Utilization of palliative radiotherapy for breast cancer patients with bone metastases treated with bisphosphonates-Toronto Sunnybrook Regional Cancer Centre experience. Support Care Cancer 12:48–52

    PubMed  Google Scholar 

  • Expert Panel On Radiation Oncology–Bone Metastases, Lutz ST, Lo SS, et al. (2012) Appropriateness Criteria® non–spine bone metastases. J Palliat Med 15:521–526

    Google Scholar 

  • Gnant M (2009) Bisphosphonates in the prevention of disease recurrence:current results and ongoing trials. Curr Cancer Drug Targets 9:824–833

    PubMed  CAS  Google Scholar 

  • Henry DH, Costa L, Goldwasser F, et al. (2001) Randomized, doubleblind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132

    Google Scholar 

  • Hoskin PJ (2003) Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat Rev 29:321–327

    PubMed  CAS  Google Scholar 

  • Hoskin PJ, Price P, Easton D, et al. (1992) A prospective randomised trial of 4 Gy or 8 Gy single doses in the treatment of metastatic bone pain. Radiother Oncol 23:74–78.

    PubMed  CAS  Google Scholar 

  • Huisman M, van den Bosch MA, Wijlemans JW, et al. (2012) Effectiveness of reirradiation for painful bone metastases:a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 84:8–14

    PubMed  Google Scholar 

  • Kagan AR, Rose CM, Bedwinek JM, et al. (2000) Bone metastases. American College of Radiology. ACR Appropriateness Criteria. Radiology 215:1077–1104.

    PubMed  Google Scholar 

  • Kijima T, Fujii Y, Suyama T, et al. (2009) Radiotherapy to bone metastases from renal cell carcinoma with or without zoledronate. BJU Int 103:620–624.

    PubMed  CAS  Google Scholar 

  • Koswig S, Budach V (1999) Remineralisation und Schmerzlinderung von Knochenmetastasen nach unterschiedlich fraktionierter Strahlentherapie (10mal 3 Gy vs. 1mal 8 Gy). Strahlenther Onkol 175:500–508

    PubMed  CAS  Google Scholar 

  • Koswig S, Buchali A, Bohmer D, et al. (1999) Palliative Strahlentherapie von Knochenmetastasen. Eine retrospektive Analyse von 176 Patienten. Strahlenther Onkol 175:509–514

    PubMed  CAS  Google Scholar 

  • Lutz S, Berk L, Chang E, et al. (2011) Palliative radiotherapy for bone metastases:an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phy. 79:965–976

    Google Scholar 

  • Mercadante S (2006) Scoring the effect of radiotherapy for painful bone metastases. Support Care Cancer 14:967–969

    PubMed  Google Scholar 

  • Mercadante S, Fulfaro F (2007) Management of painful bone metastases. Curr Opin Oncol 19:308–314

    PubMed  Google Scholar 

  • Ratanatharathorn V, Powers WE, Moss WT, et al. (1999) Bone metastasis:review and critical analysis of random allocation trials of local field treatment. Int J Radiat Oncol Biol Phys 44:1–18

    PubMed  CAS  Google Scholar 

  • Rieden K, Adolph J, Lellig U, et al. (1989a) Strahlentherapeutischer Effekt bei knochenmetastasen in Abhängigkeit von der Metastasenhäufig, Metastasenlokalisation und der Histologie des Primärtumors. Strahlenther Onkol 165:380–385

    PubMed  CAS  Google Scholar 

  • Rieden K, Mende U, Adolph J, et al. (1989b) Akzelerierte Bestrahlung von Knochenmetastasen. Strahlenther Onkol 165:23–27

    PubMed  CAS  Google Scholar 

  • Saad F (2006) Bone-directed treatments for prostate cancer. Hematol Oncol Clin North Am 20:947–963

    PubMed  Google Scholar 

  • Saad F (2008) New research findings on zoledronic acid:survival, pain, and anti-tumour effects. Cancer Treat Rev 34:183–192

    PubMed  CAS  Google Scholar 

  • Saad F, Abrahamsson PA, Miller K (2009) Preserving bone health in patients with hormone-sensitive prostate cancer:the role of bisphosphonates. BJU Int 104:1573–1579

    PubMed  CAS  Google Scholar 

  • Salazar OM, DaMotta NW, Bridgman SM, et al. (1996) Fractionated halfbody irradiation for pain palliation in widely metastatic cancers:comparison with single dose. Int J Radiat Oncol Biol Phys 36:49–60

    PubMed  CAS  Google Scholar 

  • Salazar OM, Sandhu T, da Motta NW, et al. (2001) Fractionated halfbody irradiation (HBI) for the rapid palliation of widespread, symptomatic, metastatic bone disease:a randomized Phase III trial of the International Atomic Energy Agency (IAEA). Int J Radiat Oncol Biol Phys 50:765–775

    PubMed  CAS  Google Scholar 

  • Sauer N, Leising D, Wild B, et al. (2006) Der Einfluss palliativer Strahlentherapie auf Schmerz und Lebensqualitat bei Patienten mit Knochenmetastasen. Strahlenther Onkol 182:550–556

    PubMed  Google Scholar 

  • Souchon R, Wenz F, Sedlmayer F, et al. (2009) DEGRO practice guidelines for palliative radiotherapy of metastatic breast cancer:bone metastases and metastatic spinal cord compression (MSCC). Strahlenther Onkol. 185:417–424

    PubMed  Google Scholar 

  • Stopeck AT, Lipton A, Body JJ, et al. (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer:a randomized, double-blinded study. J Clin Oncol 28:5132–5239

    PubMed  CAS  Google Scholar 

  • Szumacher E, Llewellyn-Thomas H, Franssen E, et al. (2005) Treatment of bone metastases with palliative radiotherapy:patients’ treatment preferences. Int J Radiat Oncol Biol Phys 61:1473–1481

    PubMed  Google Scholar 

  • Tong D, Gillick L, Hendrickson FR (1982) The palliation of symptomatic osseous metastases:final results of the Study by the Radiation Therapy Oncology Group. Cancer 50:893–899

    PubMed  CAS  Google Scholar 

  • Tsuya A, Kurata T, Tamura K, et al. (2007) Skeletal metastases in non-small cell lung cancer:a retrospective study. Lung Cancer 57:229–232

    PubMed  Google Scholar 

  • Ural AU, Avcu F, Candir M, et al. (2006) In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells. Breast Cancer Res 8:R52

    PubMed  Google Scholar 

  • Vassiliou V, Bruland O, Janjan N, et al. (2009) Combining systemic bisphosphonates with palliative external beam radiotherapy or bone-targeted radionuclide therapy:interactions and effectiveness. Clin Oncol (R Coll Radiol) 21:665–667

    CAS  Google Scholar 

  • Wu JS, Wong R, Johnston M, et al. (2003) Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys 55:594–605

    PubMed  Google Scholar 

  • Wu JS, Monk G, Clark T, et al. (2006) Palliative radiotherapy improves pain and reduces functional interference in patients with painful bone metastases:a quality assurance study. Clin Oncol (R Coll Radiol) 18:539–544

    CAS  Google Scholar 

  • Yu HH, Hoffe SE (2012) Beyond the conventional role of external-beam radiation therapy for skeletal metastases:new technologies and stereotactic directions. Cancer Control 19:129–136

    PubMed  Google Scholar 

  • Zeng L, Lutz S, Chow E, et al. (2012) Recent important developments in the management of nonspine bone metastases. Curr Opin Support Palliat Care 6:80–84

    PubMed  Google Scholar 

■Zu 17.2

  • Anderson PM, Wiseman GA, Dispenzieri A, et al. (2002) High-dose Samarium-153 ethylene diamine tetramethylene phosphophate:low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol 20:189–196

    PubMed  CAS  Google Scholar 

  • Anderson PM, Aguilera D, Pearson M, Shaio W (2008) Outpatient chemotherapy plus radiotherapy in sarcomas:improving cancer control with radiosensitizing agents. Cancer Control 15:38–46

    PubMed  Google Scholar 

  • Atkins HL, Mausner LF Srivastava SC, Meinken GE, et al. (1995) Tin- 117m(4+)-DTPA for palliation of pain from osseous metstases:a pilot study. J Nucl Med 36:725–729

    PubMed  CAS  Google Scholar 

  • Averbuch SD (1993) New bisphosphonates in the treatment of bone metastases. Cancer Suppl 72:3443–3451

    CAS  Google Scholar 

  • Baczyk M, Czepczynski R, Milecki P, et al. (2007) 89Sr versus 153Sm- EDTMP:comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun 28:245–250

    PubMed  Google Scholar 

  • Banerjee SR, Pullambhatia M, et al. (2011) A modular strategy to prepare multivalent inhitors of prostate-specific membrane antigen (PSMA). Oncotarget 2:1244–1253

    PubMed  Google Scholar 

  • Baum RP, Kulkarni HR (2012) Theranostics:from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy –the Bad Berka experience. Theranostics 2:437–447

    PubMed  CAS  Google Scholar 

  • Baziotis N, Yakoumakis E, Zissimopoulos, et al. (1998) Strontium-89 chloride in the treatment of bone metatases from breast cancer. Oncology 55:377–381

    PubMed  CAS  Google Scholar 

  • Berger M, Grignani G, Giostra A, et al. (2012) 153Samarium-EDTMP administration followed by hematopoietic stem cell support for bone metastases in osteosarcoma patients. Ann Oncol 23:1899–1905

    PubMed  CAS  Google Scholar 

  • Blake GM, Zivanovic MA, McEwan AJB, Ackery DM (1986) Sr-89 therapy:strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 12:447–454

    PubMed  CAS  Google Scholar 

  • Bolger JJ, Dearnaley DP, Kirk D, Lewington VJ et al. (1993) Strontium- 89 (Metastron) versus external beam radiotherapy in patients with painful bone metatases secondary to prostate cancer:preliminary report of a multicente trial. Sem Oncol 20 (Suppl 2):32–33

    CAS  Google Scholar 

  • Bouchet LG, Bolch WE, Goddu SM, et al. (2000) Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med 41:682–687

    PubMed  CAS  Google Scholar 

  • Braun S, Vogl FD, et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    PubMed  CAS  Google Scholar 

  • Brenner W, Kampen WU, Kampen AM, Henze E (2001) Skeletal uptake and soft tissue retention of 186-Re-HEDP and 153-Sm-EDTMP in patients with metastatic bone disease. J Nucl Med 42:231–236

    Google Scholar 

  • Brucer M (1990) A chronology of nuclear medicine. Heritage Publications, St. Louis

    Google Scholar 

  • Christensen MH, Petersen LJ (2012) Radionulcide treatment of painful bone metastases in patients with breast cancer:a systematic review. Cancer Treat Rev 38:164–171

    PubMed  CAS  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    PubMed  CAS  Google Scholar 

  • Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77:336–340

    PubMed  CAS  Google Scholar 

  • Deguchi T, Yang M, Ehara H et al. (1997) Detection of micrometastatic prostate cancer cells in the bone marrow of patients with prostate cancer. Br J Cancer 75:634–638

    PubMed  CAS  Google Scholar 

  • deKlerk JMH (1995) Re-186-HEDP in treatment of metatatic bone disease:pharmakokinetics and toxocity. Ponson & Looigen, Wagenningen

    Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast:a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    PubMed  CAS  Google Scholar 

  • Elgazzar AH, Maxon HR (1993) Radioisotope therapy of cancer related bone pain. In:Limouris GS, Shukla SK (eds) Radionuclides for therapy. Mediterra, Athen, pp 111–116

    Google Scholar 

  • Fellner M, Baum RP, Kubícek V, Hermann P, Lukes I, Prasad V, Rösch F (2010) PET/CT imaging of osteoblastic bone metastases with (68) Ga-bisphosphonates:first human study. Eur J Nucl Med Mol Imaging 37:834

    PubMed  Google Scholar 

  • Fischer M (1999) Leitlinie für die Radionuklidtherapie bei schmerzhaften Knochenmetastasen. Nuklearmedizin 38:270–272

    PubMed  CAS  Google Scholar 

  • Fischer M, Böhme K (1996) Nuklearmedizinsche Schmerztherapie bei metastasiertem Prostatakarzinom. Nuklearmediziner 5:339–344

    Google Scholar 

  • Fischer M, Kampen WU (2012a) Therapie mit offenen Radionukliden bei multilokulärer Skelettmetastasierung. Der Nuklearmediziner 35:186–191

    Google Scholar 

  • Fischer M, Kampen WU (2012b) Radionucliude therapy of bone metastases. Breast Care 7:100–107

    PubMed  Google Scholar 

  • Fizazi K, Beuzeboc P, Lumbroso J et al. (2009) Phase II trial of consolidation Docetaxel and Samarium-153 in patients with bone metastases from castration-resistent prostate cancer. J Clin Oncol 27:1–7

    Google Scholar 

  • Fuster D, Herranz R, Vidal-Sicart S, et al. (2000) Usefulness of strontium- 89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun 21:623–626

    PubMed  CAS  Google Scholar 

  • Galasko CSB (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop 169:20–27

    PubMed  Google Scholar 

  • Geldof AA, de Rooij L, Versteegh RT, et al. (1999) Combination 186-Re- HEDP and cisplatin supraadditive treatment effects in prostate cancer cells. J Nucl Med 40:667–671

    PubMed  CAS  Google Scholar 

  • Gerlinger M, Rowan AJ, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequency. N Engl J Med 366:883–892

    PubMed  CAS  Google Scholar 

  • Goddu SM, Bbishayee A, Bouchet LG, et al. (2000) Marrow toxicity of 33-P versus 32-P-orthophosphate:implication for therapy of bone pain and bone metastases. J Nucl Med 41:941–951

    PubMed  CAS  Google Scholar 

  • Henriksen G, Breistøl K, Bruland ØS, Fodstad Ø, Larsen RH (2002) Significant antitumor effect from bone-seeking, α-particle-emitting 223-Ra demonstrated in an experimental skeletal metastases model. Cancer Res 62:3120–3125

    PubMed  CAS  Google Scholar 

  • Hicsonmez A, Kucuk ON, Nadrieu MN, et al. (2010) Role of radionuclide therapy as adjuvant to palliative external beam radiotherapy for painful skeletal metastasis. World J Oncol 1:158–166

    CAS  Google Scholar 

  • Hobbs R, McNutt T, et al. (2008) Combined internal radionuclide therapy (IRT) and external radiation therapy (XRT) treatment planning for 153Sm-EDTMP treatment of metastatic osteosarcoma. J Nucl Med 49 (Suppl 1):47P

    Google Scholar 

  • Kalesnikov-Gauthier H, Carpenier P, Depreux P, et al. (2000) Evaluation of toxicity and efficacy of 186-Re-hydroxyethylidene diphosphonate in patients with painful bone metastases of prostate or breast cancer. J Nucl Med 41:1689–1694

    Google Scholar 

  • Kasalický J, Kraská V (1998) The effect of repeated strontium-89 chloride therapy in bone pain palliation in patients with skeletal cancer metastases. Eur J Nucl Med 25:1362–1367

    PubMed  Google Scholar 

  • Kohno N, Aogi K, Minami H, et al. 2005 Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer:a randomized placebo-controlled trial. J Clin Oncol 23:3314–3321

    PubMed  CAS  Google Scholar 

  • Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27:107–141

    PubMed  CAS  Google Scholar 

  • Krishnamurthy GT, Krishnamurthy S (2000) Invited commentary:Radionuclides for metastatic bone pain palliation:a need for rational re-evaluation in the new millenium. J Nucl Med 41:688–691

    PubMed  CAS  Google Scholar 

  • Lam MGEH, Dahmane A, Stevens WHM, et al. (2008) Combined use of zoledronic acid and 153 Sm-EDTMP in hormone-refractory prostate cancer patients with bone metastases. Eu J Nucl Med Mol Imaging 35:756–765

    CAS  Google Scholar 

  • Lam MGEH, de Klerk JMH, Zonnenberg BA (2009) Treatment of painful bone metastases in hormone- refractory prostate cancer with Zoledronic acid and Samarium-153-Ethylenediaminetetramethylphosphonic acid combined. J Pall Med 12:649–651

    Google Scholar 

  • Lau WF, Hicks R, Binns D (2001) Differential effects of bisphosphonate on Paget´s disease and metastatic prostatic carcinoma bone scan findings. Clin Nucl Med 26:347–348

    PubMed  CAS  Google Scholar 

  • Liepe K, Franke W-G, Koch R, et al. (2000) Comparison of Rhenium-188, Rhenium-186 and Strontium-89 in palliation of painful bone metastases. Nuklearmedizin 39:146–151

    PubMed  CAS  Google Scholar 

  • Loeb DM, Garrett-Mayer G, Hobbs RF et al. (2009) Dose-finding study of 153Sm-EDTMP in patients with poor-prognosis osteosarcoma. Cancer 115:2514–2522)

    PubMed  CAS  Google Scholar 

  • Loeb DM, Hobbs RF, Okoli A, et al. (2011) Tandem dosing of Samarium- 153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer 116:5470–5478

    Google Scholar 

  • Malmberg I, Persson U, Ask A, et al. (1997) Painful bone metastases in hormon-refractory prostate cancer:economic cost of strontium- 89 and/or external radiotherapy. Urology 50:747–753

    PubMed  CAS  Google Scholar 

  • Marcus CS, Saeed S, Mlikotic A, Mishkin F, Pham HL, Javellana T, Diestelhorst S, Minami C (2002) Lack of effect of a bisphosphonate (pamidronate disodium) infusion on subsequent skeletal uptake of Sm- 153-EDTMP. Clin Nucl Med 27:427–430

    PubMed  Google Scholar 

  • Mathé, D, Balogh L, Polyák A, et al. (2010) Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu- EDTMP, a potential bone pain palliation agent. Nucl Med Biol 73:215–226

    Google Scholar 

  • Maxon HR, Deutsch EA, Thomas SR, Libson K (1988) Re-186 (Sn) HEDP for treatment of multiple metastatic foci in bone:human biodistribution and dosimetric studies. Radiology 166:501–507

    PubMed  CAS  Google Scholar 

  • McCready VR, O´Sullivan J, Dearnaly D, Cook G (2002) Prediction of response of skeletal metastases from cancer of the prostate to high activity 186-Re HEDP therapy. J Nucl Med 43 Suppl 316 (abstr.) McEwan AJB (1994) Palliation of bone pain. In:Murray IPC, Ell PJ (Hrsg) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingston, Edinburgh, pp 877–892

    Google Scholar 

  • McEwan AJB, et al. (1994) A retrospective analysis of the cost effectiveness of treatment with Metastron in patients with prostate cancer metastatic to bone. Eur J Urol 26, Suppl 1:26–31

    Google Scholar 

  • Nilsson S, Larsen RH, Fossa SD, et al. (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11:4451–4459

    PubMed  CAS  Google Scholar 

  • Nilsson S, Strang P, Aksnes AK, et al. (2012) A randomized, dose-response, multicenter phase II study of radium-223-chloride for the palliation of painful bone metastases in patients with castrationresistant prostate cancer. Eur J Cancer 48:678–686

    PubMed  CAS  Google Scholar 

  • Palmedo H, Manka-Waluch A, Albers P, et al. (2003). Repeated bonetargeted therapy for hormone-refractory prostate carcinoma:randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol 21:2869–2875

    PubMed  CAS  Google Scholar 

  • Parker C, Nilsson S, Heinrich D, et al. (2012) Updated analysis of the phase III, double-blind, randomized, multinational study of radium- 223 chloride in castration-resistant prostate cancer (CRPC) patients with bone metastases. J Clin Oncol 30 (Suppl) Abstr LBA4512

    Google Scholar 

  • Parker CC, Pascoe S, Chodacki A, et al. (2013) A randomized, doubleblind, dose-finding, multicenter, phase II study od radium chloride (ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol 63:189–197

    PubMed  CAS  Google Scholar 

  • Paulus P (1995) Re-186-HEDP in routine use:correlation between dose rate measurements and clinical efficacy. Update 1:17–20

    Google Scholar 

  • Pecher C (1942) Biological investigations with radioactive calcium and strontium:preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Univ California Publ Pharmacol 2:117–149

    CAS  Google Scholar 

  • Pons F, Herranz R, Garcia A, Vidal-Sicart S, Conill C, Grau JJ, Alcover J, Fuster D, Setoain J (1997) Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med 24:1210–1214

    PubMed  CAS  Google Scholar 

  • Porter AT, McEwan AJB, Powe JE, Reid R, et al. (1993) Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local external beam irradiation in the managemant of endocrine resistant metastatic prostate cancer. Int J Rad Oncol Biol Phys 25:805–813

    CAS  Google Scholar 

  • Roodman GD (1997) Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80:1557–1514

    Google Scholar 

  • Roqué i Figuls M, Martinez-Zapata MJ, Alonso-Coello P, et al. (2008) Radioisotopes for metastatic bone pain (review). The Cochrane Library 4:1–32

    Google Scholar 

  • Rösch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours:on the way to THERANOSTICS. Dalton Trans 40:6104–6111

    PubMed  Google Scholar 

  • Rosen LS, Gordon D, Kaminski M, et al. (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast cancer –a randomized, double-blind multicenter trial. Cancer 98:1735–1744.

    PubMed  CAS  Google Scholar 

  • Schäfer M, Bauder-Wüst U, et al. (2012) A dimerized urea-based inhibitor of the prostatie-specific membrane antigen for 68Ga-PET imaging of prostate cancer. Eur J Nucl Med Mol I 2:23

    Google Scholar 

  • Schoeffel D, Bastian L, et al. (2010) Metastasen der Wirbelsäule –eine interdisziplinäre Herausforderung. J Onkol 7, Sonderdruck S1–6

    Google Scholar 

  • Sciuto R, Tofani A, Festa A, et al. (2000) Short- and long-term effects of 186-Re-1,-hydroxyethylidene diphosphonate in the treatment of painful bone metastases. J Nucl Med 41:647–654

    PubMed  CAS  Google Scholar 

  • Sciuto R, Festa A, Rea S, et al. (2002) Effects of low-dose Cisplatin on 89-Sr therapy for painful bone metastases from prostate cancer:a randomized clinical trial. J Nucl Med 43:79–86

    PubMed  CAS  Google Scholar 

  • Serafini AN (2000) Samarium Sm-153 Lexidronam for the palliation of bone pain associated with metastases. Cancer 88 (Suppl) 2034–2039

    Google Scholar 

  • Serafini AN (2001) Therapy of metstatic bone pain. J Nucl Med 42:895–906

    PubMed  CAS  Google Scholar 

  • Singh A, Holmes RA, Farhangi M, Volkert WA (1989) Human pharmacokinetics of Samarium-153 EDTMP in metastatic cancer. J Nucl Med 30:1814–1818

    PubMed  CAS  Google Scholar 

  • Sinzinger H, Palumbo B, Özker K (2011) The Vienna protocol and perspectives in radionuclide therapy. Q J Nucl Med Mol Imaging 55:420–430

    PubMed  CAS  Google Scholar 

  • Soerdjbalie-Maikoe V, Pelger RCM, Lycklama á Nijeholt GAB, et al. (2002) Strontium-89 (Metastron) and the bisphosphonate olpadronate reduce the incidence of spinal cord compression in patients with hormone-refractory prostate cancer metastatic to the skeleton. Eur J Nucl Med 29:494–498

    CAS  Google Scholar 

  • Tannock I, Gospodarowicz M, Meakin W, Panzarella T, Stewart L, Rider W (1989) Treatment of metastatic cancer with low-dose prednisone:evaluation of pain and quality of life as pragmatic indices of response. J Clin Oncol 7:590–597

    PubMed  CAS  Google Scholar 

  • Tu SM, Delpass ES, Jones D, et al. (1997) Strontium-89 combined with doxorubicin in the treatment of patients with androgen independent prostate cancer. Urol Oncol 2:191–197

    Google Scholar 

  • Tu SM, Millikan RE, Mengistu B, et al. (2001). Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate:a randomised phase II trial. Lancet 357:336–341

    PubMed  CAS  Google Scholar 

  • Valicenti RK, Trabulsi E, Intenzo C, et al. (2011) A phase I trial of samarium- 153-Lexidronam complex for treatment of clinically nonmetastatic high-risk prostate cancer:first report of a complete study. IJROBP 79:732–737

    CAS  Google Scholar 

  • Wagner G (1984) Frequency of pain in patients with cancer. Recent Results Cancer Res 89:64–71

    PubMed  CAS  Google Scholar 

  • Wood DP, Banks ER , Humphreys S, Rangnekar VM (1994) Sensitivity of immunohistochemistry and polymerase chain reaction in detecting prostate cancer cells in bone marrow. Z Histochem Cytochem 42:505–511

    CAS  Google Scholar 

  • World Health Organisation (1990) Cancer pain relief and palliative care. WHO Tech Rep Ser 804:7–73

    Google Scholar 

  • Zyskowski A, Lamb D, Morum P, et al. (2001) Strontium-89 treatment for prostate cancer bone metastases:does a protate specific antigen response predict for improved survival? Aust Radiol 45:39–42

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adamietz, I., Schmidberger, H., Kampen, W., Czech, N., Fischer, M. (2013). Schmerztherapie von Skelettmetastasen mittels ionisierender Strahlung. In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37605-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37605-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37604-7

  • Online ISBN: 978-3-642-37605-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics