Skip to main content

Automatic Design of Boolean Networks for Modelling Cell Differentiation

  • Chapter

Abstract

A mathematical model based on Random Boolean Networks (RBNs) has been recently proposed to describe the main features of cell differentiation. The model captures in a unique framework all the main phenomena involved in cell differentiation and can be subject to experimental testing. A prominent role in the model is played by cellular noise, which somehow controls the cell ontogenetic process from the stem, totipotent state to the mature, completely differentiated one. Noise is high in stem cells and decreases while the cell undergoes the differentiation process. A limitation of the current mathematical model is that RBNs, as an ensemble, are not endowed with the property of showing a smooth relation between noise level and the differentiation stages of cells. In this work, we show that it is possible to generate an ensemble of Boolean networks (BNs) that can satisfy such a requirement, while keeping the other main relevant statistical features of classical RBNs. This ensemble is designed by means of an optimisation process, in which a stochastic local search (SLS) optimises an objective function which accounts for the requirements the network ensemble has to fulfil.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-37577-4_18

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Reachable by means of transition whose probability exceeds the threshold θ.

  2. 2.

    There are some positive but not yet definitive experimental data.

  3. 3.

    Of course, the property is typical of the ensemble and isolated exceptions could be found. The value θ 0 depends on the specific instance considered.

  4. 4.

    We assume that constraints are either implicitly satisfied or that they are relaxed and included in the objective function.

  5. 5.

    Ideally, the sum of transitions going out of a vertex, except for self-loops, should not be greater than 0. 2.

  6. 6.

    Since the search process is stochastic, we can consider our design method as a biased sampling in the space of BNs.

References

  1. Serra, R., Villani, M., Barbieri, A., Kauffman, S.A., Colacci, A.: On the dynamics of random Boolean networks subject to noise: Attractors, ergodic sets and cell types. J. Theor. Biol. 265(2), 185–193 (2010)

    Article  MathSciNet  Google Scholar 

  2. Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS One 6(3), e17703, 1–9 (2011)

    Google Scholar 

  3. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  4. Aldana, M., Balleza, E., Kauffman, S.A., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  5. Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S.A., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS One 3(6), e2456 (2008)

    Article  Google Scholar 

  6. Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)

    Article  MathSciNet  Google Scholar 

  7. Kauffman, S.A.: A proposal for using the ensemble approach to understand genetic regulatory networks. J. Theor. Biol. 230, 581–590 (2004)

    Article  MathSciNet  Google Scholar 

  8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  9. Roli, A., Arcaroli, C., Lazzarini, M., Benedettini, S.: Boolean networks design by genetic algorithms. In: Villani, M., Cagnoni, S. (eds.) Proceedings of CEEI 2009 - Workshop on Complexity, Evolution and Emergent Intelligence, Reggio Emilia, Italy, 2009

    Google Scholar 

  10. Benedettini, S., Roli, A., Serra, R., Villani, M.: Stochastic local search to automatically design Boolean networks with maximally distant attractors. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G. (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 6624, pp. 22–31. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of Boolean network robots. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A., Merelo, J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G. (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 6624, pp. 43–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 320–353. Springer, New York (2003)

    Chapter  Google Scholar 

  14. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Natl. Acad. Sci. 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  15. Wikipedia: Strongly connected component — Wikipedia, The Free Encyclopedia, 2011. [Online; accessed November 18, 2013]

    Google Scholar 

  16. Derrida, B., Pomeau, Y.: Random networks of automata: A simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)

    Article  Google Scholar 

  17. Bastolla, U., Parisi, G.: Closing probabilities in the Kauffman model: An annealed computation. Phys. D. 98, 1–25 (1996)

    Article  MATH  Google Scholar 

  18. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Aca. Sci. USA 102(38), 13439–13444 (2005)

    Article  Google Scholar 

  19. Frigge, M., Hoaglin, D.C., Iglewicz, B.: Some implementations of the boxplot. Am. Stat. 43(1), 50–54 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Benedettini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benedettini, S., Roli, A., Serra, R., Villani, M. (2014). Automatic Design of Boolean Networks for Modelling Cell Differentiation. In: Cagnoni, S., Mirolli, M., Villani, M. (eds) Evolution, Complexity and Artificial Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37577-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37577-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37576-7

  • Online ISBN: 978-3-642-37577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics