Skip to main content

An Approach Towards Service Infrastructure Optimization for Electromobility

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mobility ((LNMOB))

Abstract

Electric mobiles are one of many possible answers regarding the increasing costs of fossil fuels and carbon emission reduction targets. The main contraint is that the new technology must cover the users’ mobility needs which are still rising. Due to the technical restrictions of electric vehicles, a switch to electromobility is bound to the need for a sufficient charging infrastructure taking into account current and future mobility behavior as well as the characteristics of electric vehicles. This paper explains a methodology to design and assess the charging infrastructure layout without having a significant amount of electric vehicles available. This approach includes the use of the simulation tool TrIAS (Transportation infrastructure assessment by simulation). The basis is a planning model that is able to represent concepts and parameters like users’ mobility patterns, regional street layout, available parking infrastructure as well as the e-car and its technical characteristics like range or battery capacity itself. This model is the input for a simulation-based analysis. The approach is applied in the region Bremen/Oldenburg to analyze the requirements towards a sufficient charging infrastructure for electric vehicles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The data was provided by the project partners Centre for Regional and Innovation Economics (CRIE) and Senator of Environment, Building and Transportation (SUBVE).

  2. 2.

    The data of the reference vehicle (Think City) was provided by the project partner Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI).

References

  • Arnold H, Kuhnert F, Kurtz R, Bauer W (2010) Elektromobilität: Herausforderungen für Industrie und öffentliche Hand. Accessed 23 Nov 2011

    Google Scholar 

  • Azarmand Z (2009) Location allocation problem. In Farahani RZ (ed.) Facility location: concepts, models, algorithms and case studies. Physica-Verlag, Berlin, pp 93–109

    Google Scholar 

  • Balmer M, Axhausen K, Nagel K (2006) Agent-based demand-modeling framework for large-scale microsimulations. J Transport Res Rec 1985:125

    Google Scholar 

  • Choy MC, Srinivasan D, Cheu RL (2003) Cooperative, hybrid agent architecture for real-time traffic signal control. IEEE Trans Syst Man Cybern Part A Syst Humans 33:597

    Google Scholar 

  • Daneshzand F (2009) Multifacility location problem. In Farahani RZ (ed) Facility location: concepts, models, algorithms and case studies. Physica-Verlag, Berlin, 69–92

    Google Scholar 

  • France J, Ghorbani A (2003) A multiagent system for optimizing urban traffic. In IEEE/WIC international conference on intelligent agent technology IAT 2003, pp 411–414)

    Google Scholar 

  • Gringmuth C, Liedtke G, Geweke S, Rothengatter W (2000) Impacts of intelligent information systems on transport and the economy—the micro based modelling system OVID. In: Advances in modeling, optimization and management of transportation processes and systems: theory and practice—10th meeting of the EURO working group transportation (EWGT)

    Google Scholar 

  • Hernándes JZ, Ossowski S, García-Serrano A (2002) Multiagent architectures for intelligent traffic management systems. Transport Res Part C Emerg Technol 10:473

    Google Scholar 

  • Hoberg P, Leimeister S, Jehle H, Krcmar H (2010) Elektromobilität 2010: Grundlagenstudie zu Voraussetzungen der Entwicklung von Elektromobilität in der Modellregion München. fortiss GmbH. http://www.fortiss.org/fileadmin/user_upload/FB3/Grundlagenstudie_Elektromobilitaet2010_fortiss_final.pdf. Accessed 23 Nov 2011

  • Hunecke M, Schubert S, Zinn F (2004) Mobilitätsbedürfnisse und Verkehrsmittelwahl im Nahverkehr. Ein einstellungsbasierter Zielgruppenansatz. Internationales Verkehrswesen 57(1/2):26–33

    Google Scholar 

  • Infas, DLR (2010) Mobilität in Deutschland 2008: Ergebnisbericht. Struktur—Aufkommen—Emissionen—Trends. http://www.mobilitaet-in-deutschland.de/pdf/MiD2008_Abschlussbericht_I.pdf. Accessed 23 Nov 2011

  • Junges R, Bazzan ALC (2008) Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS’08: proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, Vol 2. International Foundation for Autonomous Agents and Multiagent Systems, Richland

    Google Scholar 

  • Klügl F (2001) Multiagentensimulation: Konzepte, Werkzeuge, Anwendungen. Addison-Wesley, München

    Google Scholar 

  • Kosonen I (2003) Multi-agent fuzzy signal control based on real-time simulation. Transport Res Part C Emerg Technol 11:389

    Google Scholar 

  • Moradi E (2009) Single facility location problem. In Farahani RZ (ed) Facility location: concepts, models, algorithms and case studies. Physica-Verlag, Berlin, pp 37–68

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J de Physique I 12:2221

    Google Scholar 

  • Nunes L, Oliveira E (2004) Learning from multiple sources. In: AAMAS-2004—proceedings of the 3rd international joint conference on autonomous agents and multi agent systems, IEEE Computer Society, pp 1106–1113

    Google Scholar 

  • de Oliveira D, Ferreira P, Bazzan A, Klügl F (2004) A swarm-based approach for selection of signal plans in urban scenarios. In Dorigo M, Birattari M, Blum C, Gambardella L, Mondada F, Stützle T (eds) Ant colony optimization and swarm intelligence, Vol 3172. Springer, Berlin, pp 143–156 (Lecture Notes in Computer Science)

    Google Scholar 

  • Oliver Wyman (2009) Oliver Wyman-Studie „Elektromobilität 2025: Powerplay beim Elektrofahrzeug. http://www.oliverwyman.com/de/pdf-files/ManSum_E-Mobility_2025.pdf. Accessed 23 Nov 2011

  • OpenStreetMap Foundation (2011) http://www.openstreetmap.org/. Accessed 23 Nov 2011

  • Ossowski S, García-Serrano A (1999) Social structure in artificial agent societies: implications for autonomous problem-solving agents. In Proceedings of the 5th international workshop on intelligent agents V, agent theories, architectures, and languages ATAL’98. Springer, London, pp 133–148

    Google Scholar 

  • Rochner F, Prothmann H, Branke J, Müller-Schloer C, Schmeck H (2006) An organic architecture for traffic light controllers. In Hochberger C, Liskowsky R (eds) Informatik 2006—Informatik für Menschen, Vol 93. Köllen Verlag, pp 120–127 (Lecture notes in informatics (LNI))

    Google Scholar 

  • Salhi S, Gamal MDH (2003) A genetic algorithm based approach for the uncapacitated continuous location–allocation problem. Ann Oper Res 123:1

    Google Scholar 

  • Spath D, Bauer W, Rohfuss F, Voigt S, Rath K (2010) Strukturstudie BWe mobil—Baden-Württemberg auf dem Weg in die Elektromobilität. Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. http://www.iao.fraunhofer.de/images/studien/strukturstudie-bwe-mobil.pdf. Accessed 23 Nov 2011

  • Steierwald G (2005) Stadtverkehrsplanung: Grundlagen, Methoden, Ziele, 2nd edn. Springer, Berlin

    Google Scholar 

  • Vasirani M (2009) Vehicle-centric coordination for urban road traffic management: a market-based multiagent approach. Diss. Universidad Rey Juan Carlos, Madrid. http://hdl.handle.net/10115/5146

  • VDE (2010) Smart energy 2020: Vom smart metering zum smart grid. Verband der Elektrotechnik Elektronik Informationstechnik e.V

    Google Scholar 

  • Wiering M (2000) Multi-agent reinforcement learning for traffic light control. In: Proceedings of the 17th international conference on machine learning. Morgan Kaufmann Publishers,Burlington, pp 1151–1158

    Google Scholar 

  • Wietschel M, Kley F, Dallinger D (2009) Eine Bewertung der Ladeinfrastruktur für Elektrofahrzeuge. ZfAW. Zeitschrift für die gesamte Wertschöpfungskette Automobilwirtschaft 2009(3):33–41

    Google Scholar 

  • Zarinbal M (2009) Distance functions in location problems. In Farahani RZ (ed) Facility location: concepts, models, algorithms and case studies. Physica-Verlag, Berlin, pp 5–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hoerstebrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoerstebrock, T., Hahn, A. (2014). An Approach Towards Service Infrastructure Optimization for Electromobility. In: Hülsmann, M., Fornahl, D. (eds) Evolutionary Paths Towards the Mobility Patterns of the Future. Lecture Notes in Mobility. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37558-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37558-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37557-6

  • Online ISBN: 978-3-642-37558-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics