Assessment of CO2-Emissions from Electric Vehicles: State of the Scientific Debate

  • Jürgen GabrielEmail author
  • Philipp Wellbrock
  • Marius Buchmann
Part of the Lecture Notes in Mobility book series (LNMOB)


The purpose of our work is to summarize and contextualize the on-going discussion about the ecological effects of electric vehicles. Key driver for the introduction of electric vehicles in Germany, besides resource scarcity, is the necessity to reduce CO2-emissions in the transportation sector. Even though the media already proclaims the ecological supremacy of electric vehicles over the conventional combustion engine, the scientific discussion still tries to find an answer to the question: Will the use of electric vehicles as substitutes for conventional combustion engines significantly reduce the CO2-emissions in the transportation sector? Well known experts from Germany as well as European and American scientists picked up this task and tried to find the solution. However, as at the moment less than 5,000 electric vehicles are currently driving on German roads, the database is very limited and therefore the studies need to deduce estimates for key determinates for the emission comparison, which leads to a broad variety in the results. Within our study we compare the most important and up-to-date studies with respect to the German market to derive the potential outcomes of an emission comparison. Resulting from this study we will be able to contextualize the test drive within the model region Bremen/Oldenburg. Furthermore, the data from the model regions could be used to verify the scope of the different studies and the reliability of the different estimates used. Finally, we will be able to draw a realistic picture of the potential ecological effects of electric vehicles.


Electric Vehicle Emission Factor Urban Driving Motorway Driving Renewable Energy Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Battery-electric vehicles




Combustion vehicles


Combined Heat and Power


European Emission Trading System


Greenhouse gas


New European Drivering Cycle


Renewable energy


Tank to wheel


Wheel to wheel


  1. Blesl et al (2009) Entwicklungsstand und Perspektiven der Elektromobilität. 5218/pdf/Elektromobilitaet_Endbericht_20100322.pdf. Accessed 21 June 2011
  2. BMU (2009) Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2009) Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland unter Berücksichtigung der europäischen und globalen Entwicklung—Leitszenario 2009. Accessed 21 June 2011
  3. Engel (2007) Plug-in Hybrids. Studie zur Abschätzung des Potentials zur Reduktion der CO2-Emissionen im PKW-Verkehr bei verstärkter Nutzung von elektrischen Antrieben im Zusammenhang mit Plug-in-Hybrid Fahrzeugen. MünchenGoogle Scholar
  4. EU (2009) REGULATION (EC) No 443/2009 setting emission performance standards for new passenger cars as part of the Community’s integrated approach to reduce CO2 emissions from light-duty vehicles 23.04.2009Google Scholar
  5. Helmers (2010) Bewertung der Umwelteffizienz moderner Autoantriebe—auf dem Weg vom Diesel-Pkw-Boom zu Elektroautos, in: Umweltwissenschaften und Schadstoffforschung 22/5, 2010, p. 564-578. Accessed 28 June 2011
  6. Helms et al (2010) Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions. In: Empa (ed) Tagungsband des 18. Transport and Air Pollution Symposiums, Dübendorf, 18.-19.5 2010. Accessed 21 June 2011
  7. Horst et al (2009) Auswirkungen von Elektroautos auf den Kraftwerkspark und die CO2-Emissionen in Deutschland, WWF Deutschland (ed), 2009. Accessed 21 June 2011
  8. IER/RWI/ZEW (2009) Die Entwicklung der Energiemärkte bis 2030—Energieprognose 2009. Accessed 28 June 2011
  9. JRC (2007) Joint Research Centre/EUCAR/CONCAWE, Well-to-Wheels analysis of future automotive fuels and powertrains in the European context, Version 2c. IspraGoogle Scholar
  10. Öko-Institut (2010) Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.6. Accessed 21 June 2011
  11. Pehnt (2010) Elektromobilität und erneuerbare Energien, in: Müller (ed.): 20 Jahre Recht der Erneuerbaren Energien. Tagungsband der 7. Würzburger Gespräche zum Umweltenergierecht, Würzburg, 13.-14.10.2010. Accessed 21 June 2011
  12. Pehnt et al (2011) Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft, in: Zeitschrift für Energiewirtschaft. Accessed 21 June 2011
  13. Renewbility (2009a) Stoffstromanalyse—Nachhaltige Mobilität im Kontext erneuerbarer Energien bis 2030. Endbericht Teil 1 - Methodik und Datenbasis. Accessed 21 June 2011
  14. Renewbility (2009b). Stoffstromanalyse—Nachhaltige Mobilität im Kontext erneuerbarer Energien bis 2030. Endbericht Teil 2 —Szenarioprozess und Szenarioergebnisse. Accessed 21 June 2011
  15. Richter and Lindenberger (2010) Potenziale der Elektromobilität bis 2050—Eine szenarienbasierte Analyse der Wirtschaftlichkeit, Umweltauswirkungen und Systemintegration. KölnGoogle Scholar
  16. UBA (2009) Umweltbundesamt Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix 1990–2007, April 2009, updated March 2011. Accessed 21 June 2011
  17. Wietschel and Bünger (2010) Vergleich von Strom und Wasserstoff als CO2-freie Endenergieträger—Studie im Auftrag der RWE AG. Accessed 02 July 2011

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jürgen Gabriel
    • 1
    Email author
  • Philipp Wellbrock
    • 1
  • Marius Buchmann
    • 1
  1. 1.Bremer Energie InstitutBremenGermany

Personalised recommendations