Skip to main content

Protein Corona: Applications and Challenges

  • Chapter
  • First Online:
Protein-Nanoparticle Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 15))

Abstract

The protein corona introduces new unexpected applications and shortcomings for the nanoparticles. For instance, it is now well recognized that the protein coating reduces the targeting capability of surface-engineered nanoparticles by screening the active sites of the targeting ligands. Therefore, in this chapter, we will review the advantages and disadvantages of the protein-nanoparticle interaction with the correspondent biological impact. In addition, broad overview of current available data of both in vitro and in vivo protein-nanoparticle interactions is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  PubMed  CAS  Google Scholar 

  3. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315

    Article  PubMed  CAS  Google Scholar 

  4. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  5. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  6. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–121

    Article  PubMed  CAS  Google Scholar 

  7. Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  PubMed  CAS  Google Scholar 

  8. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357

    Article  PubMed  CAS  Google Scholar 

  9. Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    Article  PubMed  CAS  Google Scholar 

  10. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdorster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–610

    Article  PubMed  CAS  Google Scholar 

  11. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32:9353–9363

    Article  PubMed  CAS  Google Scholar 

  12. Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Article  PubMed  CAS  Google Scholar 

  13. Chonn A, Semple SC, Cullis PR (1995) beta2-Glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of “non-self” particles. J Biol Chem 270:25845–25849

    Article  PubMed  CAS  Google Scholar 

  14. Yan X, Kuipers F, Havekes LM, Havinga R, Dontje B, Poelstra K, Scherphof GL, Kamps JA (2005) The role of apolipoprotein E in the elimination of liposomes from blood by hepatocytes in the mouse. Biochem Biophys Res Commun 328:57–62

    Article  PubMed  CAS  Google Scholar 

  15. Schreier H, Abra RM, Kaplan JE, Hunt CA (1987) Murine plasma fibronectin depletion after intravenous injection of liposomes. Int J Pharm 37:233–238

    Article  CAS  Google Scholar 

  16. Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA, Azadmanesh K, Hassanlou M, Kalhor HR, Burtea C, Rothen-Rutishauser B, Laurent S, Sheibani S, Vali H (2012) Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4:5461–5468

    Article  PubMed  CAS  Google Scholar 

  17. Laurent S, Burtea C, Thirifays C, Häfeli UO, Mahmoudi M (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7:e29997

    Article  PubMed  CAS  Google Scholar 

  18. Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276

    Article  PubMed  CAS  Google Scholar 

  19. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    Article  CAS  Google Scholar 

  20. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaele D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 28:2252–2261

    Article  PubMed  CAS  Google Scholar 

  21. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Article  PubMed  CAS  Google Scholar 

  22. Price ME, Cornelius RM, Brash JL (2001) Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim Biophys Acta Biomembr 1512:191–205

    Article  CAS  Google Scholar 

  23. Arima Y, Kawagoe M, Toda M, Iwata H (2009) Complement activation by polymers carrying hydroxyl groups. ACS Appl Mater Interfaces 1:2400–2407

    Article  PubMed  CAS  Google Scholar 

  24. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  PubMed  Google Scholar 

  25. Mager MD, LaPointe V, Stevens MM (2011) Exploring and exploiting chemistry at the cell surface. Nat Chem 3:582–589

    Article  PubMed  CAS  Google Scholar 

  26. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  PubMed  CAS  Google Scholar 

  27. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161:164–174

    Article  PubMed  CAS  Google Scholar 

  28. Caracciolo G, Pozzi D, Capriotti A, Cavaliere C, Cardarelli F, Bifone A, Laganà A (2012) Cancer cell targeting of lipid gene vectors by protein corona. In: NSTI (ed) Nanotechnology 2012: bio sensors, instruments, medical, environment and energy, vol 3. CRC, Boca Raton, pp 354–357

    Google Scholar 

  29. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  PubMed  CAS  Google Scholar 

  30. Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3:571–581

    Article  PubMed  CAS  Google Scholar 

  31. Gould GW, Lippincott-Schwartz J (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 10:287–292

    Article  PubMed  CAS  Google Scholar 

  32. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  PubMed  CAS  Google Scholar 

  33. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Article  PubMed  Google Scholar 

  34. Goppert TM, Muller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60:361–372

    Article  PubMed  Google Scholar 

  35. Foote M (2007) Using nanotechnology to improve the characteristics of antineoplastic drugs: improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel. Biotechnol Annu Rev 13:345–357

    Article  PubMed  CAS  Google Scholar 

  36. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146:882–893

    Article  PubMed  CAS  Google Scholar 

  37. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  PubMed  CAS  Google Scholar 

  38. Keogh JR, Velander FF, Eaton JW (1992) Albumin-binding surfaces for implantable devices. J Biomed Mater Res 26:441–456

    Article  PubMed  CAS  Google Scholar 

  39. Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky YG, Andrievsky GV, Klochkov VK (2007) Effects of hydrated forms of C60 fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 7:1479–1485

    Article  PubMed  CAS  Google Scholar 

  40. Ghavami M, Rezaei M, Ejtehadi R, Lotfi M, Shokrgozar MA, Abd Emamy B, Raush J, Mahmoudi M (2013) Physiological temperature has a crucial role in amyloid beta in the absence and presence of hydrophobic and hydrophilic nanoparticles. ACS Chem Neurosci 4(3):375–378

    Article  PubMed  CAS  Google Scholar 

  41. Laurent S, Ejtehadi MR, Rezaei M, Kehoe PG, Mahmoudi M (2012) Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer’s disease. RSC Adv 2:5008–5033

    Article  CAS  Google Scholar 

  42. Laurent S, Mahmoudi M (2011) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidemiol Genet 2:367–390

    PubMed  CAS  Google Scholar 

  43. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano 8:137–143

    Article  CAS  Google Scholar 

  44. Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun 49:2557–2559

    Article  CAS  Google Scholar 

  45. Amiri H, Wan S, Mahmoudi M, Lascialfari A, Dawson KA, Lynch I et al (2013) Protein corona affects relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). Protein Corona: Applications and Challenges. In: Protein-Nanoparticle Interactions. Springer Series in Biophysics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37555-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37555-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37554-5

  • Online ISBN: 978-3-642-37555-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics