Advertisement

Nanoparticle and Protein Corona

  • Masoud Rahman
  • Sophie Laurent
  • Nancy Tawil
  • L’Hocine Yahia
  • Morteza Mahmoudi
Chapter
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 15)

Abstract

Nanoparticles and other nanomaterials are increasingly considered for use in biomedical applications such as imaging, drug delivery, and hyperthermic therapies. Thus, understanding the interaction of nanomaterials with biological systems becomes key for their safe and efficient application. It is increasingly being accepted that the surface of nanomaterials would be covered by protein corona upon their entrance to the biological medium. The biological medium will then see the achieved modified surface of nanomaterials, and therefore further cellular/tissue responses depend on the composition of corona. In this chapter, we describe the corona variations according to the physicochemical properties of nanomaterials (e.g., size, shape, surface charge, surface functional groups, and hydrophilicity/hydrophobicity). Besides the nanomaterials’ effects, the role of environment factors, such as protein source and slight temperature variations, is discussed in details.

Keywords

Human Serum Albumin Protein Adsorption Iron Oxide Nanoparticles Roswell Park Memorial Institute Fluorescence Correlation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534PubMedCrossRefGoogle Scholar
  2. 2.
    Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799PubMedCrossRefGoogle Scholar
  3. 3.
    Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933PubMedCrossRefGoogle Scholar
  4. 4.
    Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-Xii, and fibrinogen in plasma at interfaces. Blood 55:156–159PubMedGoogle Scholar
  5. 5.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437PubMedCrossRefGoogle Scholar
  6. 6.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270PubMedCrossRefGoogle Scholar
  7. 7.
    Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47CrossRefGoogle Scholar
  8. 8.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270PubMedCrossRefGoogle Scholar
  9. 9.
    Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357PubMedCrossRefGoogle Scholar
  10. 10.
    Gessner A, Waicz R, Lieske A, Paulke BR, Mäder K, Müller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249PubMedCrossRefGoogle Scholar
  11. 11.
    Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509PubMedCrossRefGoogle Scholar
  12. 12.
    Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580PubMedCrossRefGoogle Scholar
  13. 13.
    Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5:106–117PubMedCrossRefGoogle Scholar
  14. 14.
    Slack SM, Horbett TA (1995) The Vroman effect. ACS Symp Ser 602:112–128CrossRefGoogle Scholar
  15. 15.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055PubMedCrossRefGoogle Scholar
  16. 16.
    Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187PubMedCrossRefGoogle Scholar
  17. 17.
    Goppert TM, Muller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186PubMedCrossRefGoogle Scholar
  18. 18.
    Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428:125–133PubMedCrossRefGoogle Scholar
  19. 19.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein − nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637PubMedCrossRefGoogle Scholar
  20. 20.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632PubMedCrossRefGoogle Scholar
  21. 21.
    Gessner A, Lieske A, Paulke BR, Müller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170PubMedCrossRefGoogle Scholar
  22. 22.
    Bradley AJ, Devine DV, Ansell SM, Janzen J, Brooks DE (1998) Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids. Arch Biochem Biophys 357:185–194PubMedCrossRefGoogle Scholar
  23. 23.
    Oku N, Tokudome Y, Namba Y, Saito N, Endo M, Hasegawa Y, Kawai M, Tsukada H, Okada S (1996) Effect of serum protein binding on real-time trafficking of liposomes with different charges analyzed by positron emission tomography. Biochim Biophys Acta 1280:149–154PubMedCrossRefGoogle Scholar
  24. 24.
    Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101PubMedCrossRefGoogle Scholar
  25. 25.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920PubMedCrossRefGoogle Scholar
  26. 26.
    Moghimi SM, Patel HM (1988) Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 233:143–147PubMedCrossRefGoogle Scholar
  27. 27.
    Semple SC, Chonn A, Cullis PR (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 32:3–17PubMedCrossRefGoogle Scholar
  28. 28.
    De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753PubMedCrossRefGoogle Scholar
  29. 29.
    Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491PubMedCrossRefGoogle Scholar
  30. 30.
    Petersdorf RG (1974) Chills and fever. In: Wilson JD, Braunwald E, Isselbacher KJ et al (eds) Harrison’s principles of internal medicine, 12th edn. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5:471–480PubMedCrossRefGoogle Scholar
  32. 32.
    Mahmoudi M, Dutz S, Behzadi S, Ejtehadi MR, Rezaie M, Shokrgozar MA, Moghadam MK, Serpooshan V, Metzler S, Ruiz-Lozano P, Clement J, Maffre P, Nienhaus GU, Pfeiffer C, Ahmed AMA, Linne U, Parak WJ (2013) Temperature – the ignored factor at the NanoBio Interface. ACS Nano (Under Revision)Google Scholar
  33. 33.
    Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580PubMedCrossRefGoogle Scholar
  34. 34.
    Mahmoudi M, Lohse S, Murphy CJ, Suslick KS (2013) Variation of protein corona composition following plasmonic heating of gold nanoparticles. Nano Lett (in press)Google Scholar
  35. 35.
    Ghavami M, Saffar S, Abd Emamy B, Peirovi A, Shokrgozar MA, Serpooshan V, Mahmoudi M (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3:1119–1126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masoud Rahman
    • 1
  • Sophie Laurent
    • 2
  • Nancy Tawil
    • 3
  • L’Hocine Yahia
    • 3
  • Morteza Mahmoudi
    • 4
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California in DavisDavisUSA
  2. 2.NanoBio Interactions Laboratory Department of Nanotechnology Faculty of PharmacyTehran University of Medical SciencesTehranIran
  3. 3.Laboratoire d’Innovation et, d’Analyse de BioperformanceÉcole Polytechnique de MontréalMontrealCanada
  4. 4.Pasteur Institute of Iran, National Cell Bank NanoBio Interactions LaboratoryTehranIran

Personalised recommendations