The Biological Significance of “Nano”-interactions

  • Masoud Rahman
  • Sophie Laurent
  • Nancy Tawil
  • L’Hocine Yahia
  • Morteza Mahmoudi
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 15)


In the recent decade, the fabrication of nanoparticles and exploration of their properties have attracted the attention of all branches of science such as physicists, chemists, biologists, engineers, and even medical doctors. Interests for nanoparticles arise from the fact that their mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties of these nanoparticles are completely different from their bulk properties and the predetermined differences are depended on the physicochemical properties of the nanoparticles. There are numerous areas where nanoparticles are of scientific and technological interest, specifically for medical community, where the synthetic and biologic worlds come together and lead to an important concern for design of safe nano-biomaterials. In this chapter, we review and discuss the major biomedical applications of nanoparticles.


Localize Surface Plasmon Resonance Surface Charge Density Protein Corona Therapeutic Cargo Implantable Biosensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berube D, Bormand PJA (2008) A tale of opportunities, uncertainties and risks. Nanotoday 3:56–59CrossRefGoogle Scholar
  2. 2.
    Roco MC, Harthorn B, Guston D, Shapira P (2011) Innovative and responsible governance of nanotechnology for societal development. J Nanopart Res 13:3557–3590CrossRefGoogle Scholar
  3. 3.
    Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919CrossRefGoogle Scholar
  4. 4.
    Roco MC (2011) Nanotechnology: from discovery to innovation and socioeconomic projects. Chem Eng Prog 107:21–27Google Scholar
  5. 5.
    Canadian Institute of Health Research (2011) Important funding for nanomedicine research to improve diagnosis and treatment, vol 2011. Canadian Institute of Health Research, OttawaGoogle Scholar
  6. 6.
    Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM (2007) Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362:384–396PubMedCrossRefGoogle Scholar
  7. 7.
    Juanola-Feliu E, Colomer-Farrarons J, Miribel-Catala P, Samitier J, Valls-Pasola J (2012) Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis. Technovation 32:193–204CrossRefGoogle Scholar
  8. 8.
    Shapira P, Wang J (2010) Follow the money. Nature 468:627–628PubMedCrossRefGoogle Scholar
  9. 9.
    Clavijo-Jordan V, Kodibagkar VD, Beeman SC, Hann BD, Bennett KM (2012) Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:345–365PubMedCrossRefGoogle Scholar
  10. 10.
    Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22:494001PubMedCrossRefGoogle Scholar
  11. 11.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664PubMedCrossRefGoogle Scholar
  12. 12.
    Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422PubMedCrossRefGoogle Scholar
  13. 13.
    Rogers WJ, Meyer CH, Kramer CM (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3:554–562PubMedCrossRefGoogle Scholar
  14. 14.
    Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834PubMedCrossRefGoogle Scholar
  15. 15.
    Jin Y, Jia C, Huang SW, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41PubMedCrossRefGoogle Scholar
  16. 16.
    Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37:24–29PubMedCrossRefGoogle Scholar
  17. 17.
    Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR (2010) Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat Rev Clin Oncol 7:266–276PubMedCrossRefGoogle Scholar
  18. 18.
    Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Yahia L, Beaudoin G, Soulez G, Mankiewicz M (2007) Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system. In: Ayache N, Ourselin S, Maeder A (eds) Medical image computing and computer-assisted intervention – MICCAI 2007, Pt 1, Proceedings, vol 4791, 29 October to 2 November, Brisbane, Australia, pp 144–152Google Scholar
  19. 19.
    Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633PubMedCrossRefGoogle Scholar
  20. 20.
    Polizu S, Maugey M, Poulin S, Poulin P, Yahia L (2006) Nanoscale surface of carbon nanotube fibers for medical applications: structure and chemistry revealed by TOF-SIMS analysis. Appl Surf Sci 252:6750–6753CrossRefGoogle Scholar
  21. 21.
    Polizu S, Savadogo O, Poulin P, Yahia L (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883–1904PubMedCrossRefGoogle Scholar
  22. 22.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627PubMedCrossRefGoogle Scholar
  23. 23.
    Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393PubMedCrossRefGoogle Scholar
  24. 24.
    He G, Eckert J, Loser W, Schultz L (2003) Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater 2:33–37PubMedCrossRefGoogle Scholar
  25. 25.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581PubMedCrossRefGoogle Scholar
  26. 26.
    Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276PubMedCrossRefGoogle Scholar
  27. 27.
    Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921PubMedCrossRefGoogle Scholar
  28. 28.
    Tao NJ (2006) Electron transport in molecular junctions. Nat Nanotechnol 1:173–181PubMedCrossRefGoogle Scholar
  29. 29.
    Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427PubMedCrossRefGoogle Scholar
  30. 30.
    Pickup JC (2012) Management of diabetes mellitus: is the pump mightier than the pen? Nat Rev Endocrinol 8:425–433PubMedCrossRefGoogle Scholar
  31. 31.
    Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703PubMedCrossRefGoogle Scholar
  32. 32.
    Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92PubMedCrossRefGoogle Scholar
  33. 33.
    Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593PubMedCrossRefGoogle Scholar
  34. 34.
    Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17:R50–R80CrossRefGoogle Scholar
  35. 35.
    Wu CS, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904PubMedCrossRefGoogle Scholar
  36. 36.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3:434–439PubMedCrossRefGoogle Scholar
  37. 37.
    El-Hosseiny A, Genaidy A, Shell R, Stambough JL, Dimov M (2008) Multinetwork nanobiosensing: potential approaches in understanding, diagnosing, and tracking discogenic pain. Human Factors Ergon Manuf 18:374–390CrossRefGoogle Scholar
  38. 38.
    Ryu WH, Vyakarnam M, Greco RS, Prinz FB, Fasching RJ (2007) Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Biomed Microdev 9:845–853CrossRefGoogle Scholar
  39. 39.
    Qiu HJ, Li L, Lang QL, Zou FX, Huang XR (2012) Aligned nanoporous PtNi nanorod-like structures for electrocatalysis and biosensing. RSC Adv 2:3548–3554CrossRefGoogle Scholar
  40. 40.
    Qiu H, Zou F (2012) Fabrication of stratified nanoporous gold for enhanced biosensing. Biosens Bioelectron 35:349–354PubMedCrossRefGoogle Scholar
  41. 41.
    Kauffman DR, Shade CM, Uh H, Petoud S, Star A (2009) Decorated carbon nanotubes with unique oxygen sensitivity. Nat Chem 1:500–506PubMedCrossRefGoogle Scholar
  42. 42.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871PubMedCrossRefGoogle Scholar
  43. 43.
    Zijlstra P, Paulo PM, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:379–382PubMedCrossRefGoogle Scholar
  44. 44.
    Xie P, Xiong Q, Fang Y, Qing Q, Lieber CM (2012) Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol 7:119–125CrossRefGoogle Scholar
  45. 45.
    Scarpa G, Idzko AL, Yadav A, Martin E, Thalhammer S (2010) Toward cheap disposable sensing devices for biological assays. IEEE Trans Nanotechnol 9:527–532CrossRefGoogle Scholar
  46. 46.
    Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRefGoogle Scholar
  47. 47.
    Bondavalli P, Legagneux P, Pribat D (2009) Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens Actuator B-Chem 140:304–318CrossRefGoogle Scholar
  48. 48.
    Vichchulada P, Lipscomb LD, Zhang QH, Lay MD (2009) Incorporation of single-walled carbon nanotubes into functional sensor applications. J Nanosci Nanotechnol 9:2189–2200PubMedCrossRefGoogle Scholar
  49. 49.
    Cho SH, Chang WS, Kim KR, Hong JW (2009) Measurement of UV absorption of single living cell for cell manipulation using NIR femtosecond laser. Appl Surf Sci 255:4974–4978CrossRefGoogle Scholar
  50. 50.
    Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. Biol Chem 393:235–248PubMedCrossRefGoogle Scholar
  51. 51.
    Winkler MT, Sher MJ, Lin YT, Smith MJ, Zhang HF, Gradecak S, Mazur E (2012) Studying femtosecond-laser hyperdoping by controlling surface morphology. J Appl Phys 111:093511CrossRefGoogle Scholar
  52. 52.
    Watanabe W, Matsunaga S, Higashi T, Fukui K, Itoh K (2008) In vivo manipulation of fluorescently labeled organelles in living cells by multiphoton excitation. J Biomed Opt 13:031213PubMedCrossRefGoogle Scholar
  53. 53.
    Brugues J, Nuzzo V, Mazur E, Needleman DJ (2012) Nucleation and transport organize microtubules in metaphase spindles. Cell 149:554–564PubMedCrossRefGoogle Scholar
  54. 54.
    Reich U, Fadeeva E, Warnecke A, Paasche G, Muller P, Chichkov B, Stover T, Lenarz T, Reuter G (2012) Directing neuronal cell growth on implant material surfaces by microstructuring. J Biomed Mater Res Part B Appl Biomater 100:940–947PubMedCrossRefGoogle Scholar
  55. 55.
    Baumgart J, Humbert L, Boulais E, Lachaine R, Lebrun JJ, Meunier M (2012) Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 33:2345–2350PubMedCrossRefGoogle Scholar
  56. 56.
    Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284PubMedCrossRefGoogle Scholar
  57. 57.
    Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4:765–772PubMedCrossRefGoogle Scholar
  58. 58.
    Baraban L, Makarov D, Streubel R, Monch I, Grimm D, Sanchez S, Schmidt OG (2012) Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6:3383–3389PubMedCrossRefGoogle Scholar
  59. 59.
    Gao W, Sattayasamitsathit S, Wang J (2012) Catalytically propelled micro-/nanomotors: how fast can they move? Chem Rec 12:224–231PubMedCrossRefGoogle Scholar
  60. 60.
    Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6:1751–1756PubMedCrossRefGoogle Scholar
  61. 61.
    Pumera M (2010) Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2:1643–1649PubMedCrossRefGoogle Scholar
  62. 62.
    Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345PubMedCrossRefGoogle Scholar
  63. 63.
    Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20:2120–2125PubMedCrossRefGoogle Scholar
  64. 64.
    Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27–30PubMedCrossRefGoogle Scholar
  65. 65.
    Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218–8222PubMedCrossRefGoogle Scholar
  66. 66.
    Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y (2011) Multifunctional carbon-nanotube cellular endoscopes. Nat Nanotechnol 6:57–64PubMedCrossRefGoogle Scholar
  67. 67.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRefGoogle Scholar
  68. 68.
    Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692PubMedCrossRefGoogle Scholar
  69. 69.
    Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67–73PubMedCrossRefGoogle Scholar
  70. 70.
    Amir-Aslani A, Mangematin V (2010) The future of drug discovery and development: shifting emphasis towards personalized medicine. Technol Forecast Soc Change 77:203–217CrossRefGoogle Scholar
  71. 71.
    Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28:571–582CrossRefGoogle Scholar
  72. 72.
    Zderic V, Clark JI, Martin RW, Vaezy S (2004) Ultrasound-enhanced transcorneal drug delivery. Cornea 23:804–811PubMedCrossRefGoogle Scholar
  73. 73.
    Yanga W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247CrossRefGoogle Scholar
  74. 74.
    Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433PubMedCrossRefGoogle Scholar
  75. 75.
    Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303PubMedCrossRefGoogle Scholar
  76. 76.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557PubMedCrossRefGoogle Scholar
  77. 77.
    Kuna JJ, Voitchovsky K, Singh C, Jiang H, Mwenifumbo S, Ghorai PK, Stevens MM, Glotzer SC, Stellacci F (2009) The effect of nanometre-scale structure on interfacial energy. Nat Mater 8:837–842PubMedCrossRefGoogle Scholar
  78. 78.
    Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786PubMedCrossRefGoogle Scholar
  79. 79.
    Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nanotoday 3:40–47CrossRefGoogle Scholar
  80. 80.
    Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3CrossRefGoogle Scholar
  81. 81.
    Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9PubMedCrossRefGoogle Scholar
  82. 82.
    Chellata F, Merhi Y, Moreau A, Yahia LH (2005) Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 26:7260–7275CrossRefGoogle Scholar
  83. 83.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265PubMedCrossRefGoogle Scholar
  84. 84.
    Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128PubMedCrossRefGoogle Scholar
  85. 85.
    Mbeh DA, Franca R, Merhi Y, Zhang XF, Veres T, Sacher E, Yahia L (2012) In vitro biocompatibility assessment of functionalized magnetite nanoparticles: biological and cytotoxicological effects. J Biomed Mater Res Part A 100:1637–1646CrossRefGoogle Scholar
  86. 86.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622PubMedCrossRefGoogle Scholar
  87. 87.
    Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699PubMedCrossRefGoogle Scholar
  88. 88.
    Huang YW, Wu CH, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859CrossRefGoogle Scholar
  89. 89.
    Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–246PubMedCrossRefGoogle Scholar
  90. 90.
    Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568PubMedCrossRefGoogle Scholar
  91. 91.
    Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masoud Rahman
    • 1
  • Sophie Laurent
    • 2
  • Nancy Tawil
    • 3
  • L’Hocine Yahia
    • 3
  • Morteza Mahmoudi
    • 4
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California in DavisDavisUSA
  2. 2.NanoBio Interactions Laboratory Department of Nanotechnology Faculty of PharmacyTehran University of Medical SciencesTehranIran
  3. 3.Laboratoire d’Innovation et, d’Analyse de BioperformanceÉcole Polytechnique de MontréalMontrealCanada
  4. 4.Pasteur Institute of Iran, National Cell Bank NanoBio Interactions LaboratoryTehranIran

Personalised recommendations