Advertisement

Material Design Considerations Based on Thermoelectric Quality Factor

  • Heng WangEmail author
  • Yanzhong Pei
  • Aaron D. LaLonde
  • G. Jeffery Snyder
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 182)

Abstract

In this chapter several aspects of the electronic and phonon structure are considered for the design and engineering of advanced thermoelectric materials. For a given compound, its thermoelectric figure of merit, zT, is fully exploited only when the free carrier density is optimized. Achieving higher zT beyond this requires the improvement in the material quality factor B. Using experimental data on lead chalcogenides as well as examples of other good thermoelectric materials, we demonstrate how the fundamental material parameters: effective mass, band anisotropy, deformation potential, and band degeneracy, among others, impact the thermoelectric properties and lead to desirable thermoelectric materials. As the quality factor B is introduced under the assumption of acoustic phonon (deformation potential) scattering, a brief discussion about carrier scattering mechanisms is also included. This simple model with the use of an effective deformation potential coefficient fits the experimental properties of real materials with complex structures and multi-valley Fermi surfaces remarkably well—which is fortunate as these are features likely found in advanced thermoelectric materials.

Keywords

Optical Phonon Thermoelectric Material Acoustic Phonon Deformation Potential Lead Chalcogenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.P. Chasmar, R. Stratton, J. Electron. Control 7, 52–72 (1959)CrossRefGoogle Scholar
  2. 2.
    H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, Heidelberg, 2010)Google Scholar
  3. 3.
    H.J. Goldsmid, Thermoelectric Refrigeration (Temple Press Books LTD, London, 1964)CrossRefGoogle Scholar
  4. 4.
    G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)Google Scholar
  5. 5.
    G.D. Mahan, Solid State Physics, (Academic Press Inc., San Diego , 1998), vol. 51, pp. 81–157Google Scholar
  6. 6.
    G.A. Slack, in CRC Thermoelectric Handbook, ed. by D.M. Rowe (CRC Press LLC, Boca Raton, 1995)Google Scholar
  7. 7.
    Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Energy Environ. Sci. 5(7), 7963–7969 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Herring, Bell Syst. Tech. J. 34(2), 237–290 (1955)CrossRefGoogle Scholar
  9. 9.
    Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970)CrossRefGoogle Scholar
  10. 10.
    C. Herring, E. Vogt, Phys. Rev. 101(3), 944 (1956)CrossRefGoogle Scholar
  11. 11.
    Y. Takagiwa, Y. Pei, G. Pomrehn, G. J. Snyder, Appl. Phys. Lett. 101, 092102 (2012)Google Scholar
  12. 12.
    J. Bardeen, W. Shockley, Phys. Rev. 80(1), 72 (1950)CrossRefGoogle Scholar
  13. 13.
    E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, G.J. Snyder, Adv. Funct. Mater. 18(18), 2795–2800 (2008)CrossRefGoogle Scholar
  14. 14.
    A.F. May, E.S. Toberer, A. Saramat, G.J. Snyder, Phys. Rev. B 80(12), 125205 (2009)CrossRefGoogle Scholar
  15. 15.
    Y.I. Ravich, B.A. Efimova, V.I. Tamarchenko, Phys. Status Solidi B-Basic Res. 43(2), 453–469 (1971)CrossRefGoogle Scholar
  16. 16.
    L.G. Ferreira, Phys. Rev. 137(5A), 1601–1609 (1965)Google Scholar
  17. 17.
    K. Seeger, Semiconductor Physics An Introduction, 9th edn. (Springer, Berlin, Heidelberg, 2004)Google Scholar
  18. 18.
    H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder, Proc. Nat. Acad. Sci. 109(25), 9705–9709 (2012)CrossRefGoogle Scholar
  19. 19.
    G.E. Pikus, G.L. Bir, Sov. Phys. Solid State 1(11), 1502–1517 (1960)Google Scholar
  20. 20.
    G.L. Bir, G.E. Pikus, Sov. Phys. Solid State 2(9), 2039–2051 (1961)Google Scholar
  21. 21.
    M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80(4), 2234–2252 (1996)CrossRefGoogle Scholar
  22. 22.
    I.I. Zasavitskii, E. Silva, E. Abramof, P.J. McCann, Phys. Rev. B 70(11), 115302 (2004)Google Scholar
  23. 23.
    H.Z. Wu, N. Dai, P.J. McCann, Phys. Rev. B 66(4), 045303 (2002)Google Scholar
  24. 24.
    Springer Materials the Landolt-Börnstein DatabaseGoogle Scholar
  25. 25.
    B.-L. Huang, M. Kaviany, Phys. Rev. B 77(12), 125209 (2008)Google Scholar
  26. 26.
    T. Caillat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80(8), 4442–4449 (1996)CrossRefGoogle Scholar
  27. 27.
    J.O. Sofo, G.D. Mahan, Phys. Rev. B 58(23), 15620–15623 (1998)CrossRefGoogle Scholar
  28. 28.
    J.L. Feldman, D.J. Singh, Phys. Rev. B 53(10), 6273–6282 (1996)CrossRefGoogle Scholar
  29. 29.
    A. May, J.-P. Fleurial, G. Snyder, Phys. Rev. B 78(12), 125205 (2008)Google Scholar
  30. 30.
    A.F. May, D.J. Singh, G.J. Snyder, Phys. Rev. B 79(15), 153101 (2009)CrossRefGoogle Scholar
  31. 31.
    K. Tukioka, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 30(2), 212–217 (1991)Google Scholar
  32. 32.
    B.M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific Publishing Co. Pte. Ltd., Singapor, 1991)Google Scholar
  33. 33.
    D.J. Howarth, E.H. Sondheimer, Proc. Royal Society Lond. Ser. Math. Phys. sci. 219(1136), 53–74 (1953)Google Scholar
  34. 34.
    V.W.L. Chin, R.J. Egan, T.L. Tansley, J. Appl. Phys. 69(6), 3571–3577 (1991)CrossRefGoogle Scholar
  35. 35.
    D.I. Bilc, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 74(12), 125202 (2006)CrossRefGoogle Scholar
  36. 36.
    L.Y. Morgovskii, Y.I. Ravich, Soviet Physics Semiconductors-Ussr 5(5), 860 (1971)Google Scholar
  37. 37.
    C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55(3), 645–705 (1983)CrossRefGoogle Scholar
  38. 38.
    W.A. Harrison, Phys. Rev. 104(5), 1281 (1956)CrossRefGoogle Scholar
  39. 39.
    K. Takeda, N. Matsumoto, J. Phys. C-Solid State Phys. 17(28), 5001–5015 (1984)CrossRefGoogle Scholar
  40. 40.
    J.D. Wiley, M. Didomeni, Phys. Rev. B 2(2), 427 (1970)Google Scholar
  41. 41.
    J.D. Wiley, Solid State Commun. 8(22), 1865–1868 (1970)CrossRefGoogle Scholar
  42. 42.
    M. Costato, G. Gagliani, C. Jacoboni, L. Reggiani, J. Phys. Chem. Solids 35(12), 1605–1614 (1974)CrossRefGoogle Scholar
  43. 43.
    Y.I. Ravich, Sov. Phys. Semiconductors-Ussr 3(10), 1278 (1970)Google Scholar
  44. 44.
    R. Dalven, Phys. Rev. B 3(6), 1953–1954 (1971)CrossRefGoogle Scholar
  45. 45.
    H. Ehrenreich, J. Appl. Phys. 32(10), 2155–2166 (1961)CrossRefGoogle Scholar
  46. 46.
    D.L. Rode, Phys. Rev. B 2(4), 1012–1024 (1970)CrossRefGoogle Scholar
  47. 47.
    D.L. Rode, Phys. Rev. B-Solid State 2(10), 4036–4044 (1970)CrossRefGoogle Scholar
  48. 48.
    A.R. Hutson, Phys. Rev. 108(2), 222–230 (1957)CrossRefGoogle Scholar
  49. 49.
    Y.I. Ravich, B.A. Efimova, V.I. Tamarchenko, Phys. Status Solidi B-Basic Res. 43(1), 11–33 (1971)CrossRefGoogle Scholar
  50. 50.
    D.M. Zayachuk, Semiconductors 31(2), 173–176 (1997)CrossRefGoogle Scholar
  51. 51.
    C.M. Bhandari, D.M. Rowe, J. Phys. D: Appl. Phys. 18(5), 873 (1985)CrossRefGoogle Scholar
  52. 52.
    R.L. Petritz, W.W. Scanlon, Phys. Rev. 97(6), 1620–1626 (1955)CrossRefGoogle Scholar
  53. 53.
    S. Johnsen, J.Q. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, M.G. Kanatzidis, J. Am. Chem. Soc. 133(10), 3460–3470 (2011)CrossRefGoogle Scholar
  54. 54.
    R.S. Allgaier, W.W. Scanlon, Phy. Rev. 111(4), 1029–1037 (1958)CrossRefGoogle Scholar
  55. 55.
    L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133(50), 20476–20487 (2011)CrossRefGoogle Scholar
  56. 56.
    H. Wang, E. Schechtel, Y. Pei and G. J. Snyder, Adv. Energy Mater. 3, 488–498 (2013)Google Scholar
  57. 57.
    E.G. Bylander, M. Hass, Solid State Commun. 4(1), 51–53 (1966)CrossRefGoogle Scholar
  58. 58.
    Y. Kanai, K. Shohno, Jpn. J. Appl. Phys. 2, 6–10 (1963)CrossRefGoogle Scholar
  59. 59.
    Y. I. Ravich, in Lead Chalcogenides Physics and Applications, vol. 18, ed. by D. Khokhlov (Taylor and Francis, New York, 2003)Google Scholar
  60. 60.
    P. Ghosez, M. Veithen, J. Phys.-Condes. Matter 19(9), 096002 (2007)Google Scholar
  61. 61.
    G. Kliche, Infrared Phys. 24(2), 171–177 (1984)Google Scholar
  62. 62.
    G.S. Nolas, G.A. Slack, T. Caillat, G.P. Meisner, J. Appl. Phys. 79(5), 2622–2626 (1996)CrossRefGoogle Scholar
  63. 63.
    L. Chaput, J. Tobola, P. Pécheur, H. Scherrer, Phys. Rev. B 73(4), 045121 (2006)Google Scholar
  64. 64.
    P. Larson, S.D. Mahanti, M.G. Kanatzidis, Phys. Rev. B 62(19), 12754–12762 (2000)CrossRefGoogle Scholar
  65. 65.
    T.J. Zhu, K. Xiao, C. Yu, J.J. Shen, S.H. Yang, A.J. Zhou, X.B. Zhao, J. He, J. Appl. Phys. 108(4), 044903–044905 (2010)CrossRefGoogle Scholar
  66. 66.
    C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, J. He, Acta Mater. 57(9), 2757–2764 (2009)CrossRefGoogle Scholar
  67. 67.
    X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem. Soc. 133(20), 7837–7846 (2011)CrossRefGoogle Scholar
  68. 68.
    Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473(7345), 66–69 (2011)CrossRefGoogle Scholar
  69. 69.
    Y. Takagiwa, Y. Pei, G. Pomrehn, G. J. Snyder, APL Materials in press (2013)Google Scholar
  70. 70.
    Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, Energy Environ. Sci. 4, 2085–2089 (2011)CrossRefGoogle Scholar
  71. 71.
    H. Wang, Y. Pei, A.D. Lalonde, G.J. Snyder, Adv. Mater. 23(11), 1366–1370 (2011)CrossRefGoogle Scholar
  72. 72.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B 74(4), 045207 (2006)Google Scholar
  73. 73.
    S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, J.-P. Fleurial, J. Mater. Chem. 21(33), 12259 (2011)CrossRefGoogle Scholar
  74. 74.
    W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett. 108(16), 166601 (2012)CrossRefGoogle Scholar
  75. 75.
    X. Liu, H. Wang, L. Hu, H. Xie, G. Jiang, G. J. Snyder, X. Zhao, T. Zhu, Adv. Energ. Mater. doi: 10.1002/aenm.201300174 (2013)
  76. 76.
    D.A. Pshenay-Severin, M.I. Fedorov, Phys. Solid State 49(9), 1633–1637 (2007)CrossRefGoogle Scholar
  77. 77.
    Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, Appl. Phys. Lett. 93(10), 102109 (2008)CrossRefGoogle Scholar
  78. 78.
    F. Ben Zid, A. Bhouri, H. Mejri, M. Said, N. Bouarissa, J.L. Lazzari, F.A. d’Avitaya, J. Derrien, Physica B 322(3–4), 225–235 (2002)CrossRefGoogle Scholar
  79. 79.
    P.E. Batson, J.F. Morar, Appl. Phys. Lett. 59(25), 3285–3287 (1991)CrossRefGoogle Scholar
  80. 80.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93(19), 193121 (2008)CrossRefGoogle Scholar
  81. 81.
    M.N. Tripathi, C.M. Bhandari, J. Phys. Condes. Matter 15(31), 5359–5370 (2003)Google Scholar
  82. 82.
    A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Phys. Rev. B 80(15), 155327 (2009)CrossRefGoogle Scholar
  83. 83.
    G.A. Slack, M.A. Hussain, J. Appl. Phys. 70(5), 2694–2718 (1991)CrossRefGoogle Scholar
  84. 84.
    M. I. Fedorov, D. A. Pshenay-Severin, V. K. Zaitsev, S. Sano, M. V. Vedernikov, Features of Conduction Mechanism in n-type Mg2Si1-xSnx Solid Solutions. (IEEE, New York, 2003)Google Scholar
  85. 85.
    D.A. Pshenay-Severin, M.I. Fedorov, Phys. Solid State 52(7), 1342–1347 (2010)CrossRefGoogle Scholar
  86. 86.
    H. Brooks, Theory of the Electrical Properties of Germanium Silicon (Academic Press Inc, NY, 1955)Google Scholar
  87. 87.
    W.P. Mason, T.B. Bateman, Phys. Rev. Lett. 10(5), 151–154 (1963)CrossRefGoogle Scholar
  88. 88.
    C.B. Vining, J. Appl. Phys. 69(1), 331–341 (1991)CrossRefGoogle Scholar
  89. 89.
    D. Long, Phy. Rev. 120(6), 2024–2032 (1960)CrossRefGoogle Scholar
  90. 90.
    J.E. Aubrey, W. Gubler, T. Henningsen, S.H. Koenig, Phys. Rev. 130(5), 1667–1670 (1963)CrossRefGoogle Scholar
  91. 91.
    F.J. Morin, J.P. Maita, Phys. Rev. 96(1), 28–35 (1954)CrossRefGoogle Scholar
  92. 92.
    G.W. Ludwig, R.L. Watters, Phys. Rev. 101(6), 1699–1701 (1956)CrossRefGoogle Scholar
  93. 93.
    J.G. Nash, J.W. Holmkennedy, Phys. Rev. B 15(8), 3994–4006 (1977)CrossRefGoogle Scholar
  94. 94.
    P.D. Yoder, V.D. Natoli, R.M. Martin, J. Appl. Phys. 73(9), 4378–4383 (1993)CrossRefGoogle Scholar
  95. 95.
    S.V. Obukhov, V.G. Tyuterev, Phys. Solid State 51(6), 1110–1113 (2009)CrossRefGoogle Scholar
  96. 96.
    Z. Wang, S. D. Wang, S. Obukhov, N. Vast, J. Sjakste, V. Tyuterev, N. Mingo, Phys. Rev. B 83(20), 205208 (2011)Google Scholar
  97. 97.
    F. Murphy-Armando, S. Fahy, Phys. Rev. B 78(3), 035202 (2008)Google Scholar
  98. 98.
    D.M. Rowe, C.M. Bhandari, J. Phys. Lett. 46(1), L49–L52 (1985)CrossRefGoogle Scholar
  99. 99.
    H. Wang, A.D. LaLonde, Y. Pei, and G. J. Snyder, Adv. Funct. Mater. 23, 1586–1596, (2013)Google Scholar
  100. 100.
    Y. Z. Pei, A. D. LaLonde, N. A. Heinz, X. Y. Shi, S. Iwanaga, H. Wang, L. D. Chen, G. J. Snyder, Adv. Mater. 23(47), 5674–5678 (2011)Google Scholar
  101. 101.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321(5888), 554–557 (2008)Google Scholar
  102. 102.
    C.M. Jaworski, B. Wiendlocha, V. Jovovic, J.P. Heremans, Energy Environ. Sci. 4, 4155–4162 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Heng Wang
    • 1
    Email author
  • Yanzhong Pei
    • 1
  • Aaron D. LaLonde
    • 1
  • G. Jeffery Snyder
    • 1
  1. 1.Department of Materials ScienceCalifornia Institute of TechnologyPasadenaUS

Personalised recommendations