Advertisement

A Theoretically-Sound Approach for OLAPing Uncertain and Imprecise Multidimensional Data Streams

  • Alfredo CuzzocreaEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 304)

Abstract

In this chapter, we introduce a novel approach for tackling the problem of OLAPing uncertain and imprecise multidimensional data streams via novel theoretical tools that exploit probability, possible-worlds and probabilistic estimators theories. The result constitutes a fundamental study for this exciting scientific field that, behind to elegant theories, is relevant for a plethora of modern data stream applications and systems that are more and more characterized by the presence of uncertainty and imprecision.

Keywords

Data Stream Probability Distribution Function Probabilistic Estimator Continuous Query Probabilistic Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D., Carney, D., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal 12(2) (2003)Google Scholar
  2. 2.
    Aggarwal, C.C., Yu, P.S.: A Framework for Clustering Uncertain Data Streams. In: IEEE ICDE (2008)Google Scholar
  3. 3.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: ACM PODS (2002)Google Scholar
  4. 4.
    Babu, S., Widom, J.: Continuous Queries over Data Streams. ACM SIGMOD Record 30(3) (2001)Google Scholar
  5. 5.
    Burdick, D., Deshpande, P., Jayram, T.S., Ramakrishnan, R., Vaithyanathan, S.: OLAP over Uncertain and Imprecise Data. In: VLDB (2005)Google Scholar
  6. 6.
    Cai, Y.D., Clutterx, D., Papex, G., Han, J., Welgex, M., Auvilx, L.: MAIDS: Mining Alarming Incidents from Data Streams. In: ACM SIGMOD (2004)Google Scholar
  7. 7.
    Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record 26(1) (1997)Google Scholar
  8. 8.
    Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-Dimensional Regression Analysis of Time-Series Data Streams. In: VLDB (2002)Google Scholar
  9. 9.
    Cormode, G., Garofalakis, M.: Sketching Probabilistic Data Streams. In: ACM SIGMOD (2007)Google Scholar
  10. 10.
    Cormode, G., Korn, F., Tirthapura, S.: Exponentially Decayed Aggregates on Data Streams. In: IEEE ICDE (2008)Google Scholar
  11. 11.
    Cuzzocrea, F., Furfaro, E., Masciari, D.: Improving OLAP Analysis of Multidimensional Data Streams via Efficient Compression Techniques. In: Cuzzocrea, A. (ed.) Intelligent Techniques for Warehousing and Mining Sensor Network Data. IGI Global (2009) (to appear)Google Scholar
  12. 12.
    Cuzzocrea, Wang, W.: Approximate Range-Sum Query Answering on Data Cubes with Probabilistic Guarantees. Journal of Intelligent Information Systems 28(2) (2007)Google Scholar
  13. 13.
    Dalvi, N.N., Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. In: VLDB (2004)Google Scholar
  14. 14.
    Dobra, J., Gehrke, M., Garofalakis, R.: Processing Complex Aggregate Queries over Data Streams. In:ACM SIGMOD (2002)Google Scholar
  15. 15.
    Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: A Review. SIGMOD Record 34(2) (2005)Google Scholar
  16. 16.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1(1) (1997)Google Scholar
  17. 17.
    Han, J.: OLAP Mining: An Integration of OLAP with Data Mining. IFIP 2.6 DS (1997) Google Scholar
  18. 18.
    Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel Databases 18(2) (2005)Google Scholar
  19. 19.
    Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: ACM SIGMOD (1997)Google Scholar
  20. 20.
    Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58(301) (1963)Google Scholar
  21. 21.
    Jayram, T.S., McGregor, A., Muthukrishnan, S., Vee, E.: Estimating Statistical Aggregates on Probabilistic Data Streams. In: ACM PODS (2007)Google Scholar
  22. 22.
    Jin, R., Glimcher, L., Jermaine, C., Agrawal, G.: New Sampling-Based Estimators for OLAP Queries. In: IEEE ICDE (2006)Google Scholar
  23. 23.
    Jin, C., Yi, K., Chen, L., Xu Yu, J., Lin, X.: Sliding-Window Top-K Queries on Uncertain Streams. PVLDB 1(1) (2008)Google Scholar
  24. 24.
    Li, X., Han, J., Gonzalez, H.: High-Dimensional OLAP: A Minimal Cubing Approach. In: VLDB (2004)Google Scholar
  25. 25.
    Papoulis: Probability, Random Variables, and Stochastic Processes, 2nd edn. McGraw-Hill, New York (1984)Google Scholar
  26. 26.
    Ré, C., Suciu, D.: Approximate Lineage for Probabilistic Databases. PVLDB 1(1) (2008)Google Scholar
  27. 27.
    Timko, C.E., Dyreson, T.B.: Pre-Aggregation with Probability Distributions. In: ACM DOLAP (2006)Google Scholar
  28. 28.
    Zhang, Q., Li, F., Yi, K.: Finding Frequent Items in Probabilistic Data. In: ACM SIGMOD (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ICAR-CNRUniversity of CalabriaRende (CS)Italy

Personalised recommendations