Advertisement

Uncertain Data: Representations, Query Processing, and Applications

  • Tingjian GeEmail author
  • Alex Dekhtyar
  • Judy Goldsmith
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 304)

Abstract

Uncertain data is common in many emerging applications. In this chapter, we start by surveying a few applications in sensor networks, ubiquitous computing, and scientific databases that require managing uncertain and probabilistic data. We then present two approaches to meeting this requirement. In the first approach, we propose a rich treatment of probability distributions in the system, in particular the SPO framework and the SP-algebra. In the second approach, we stay closer to a traditional DBMS, extended with tuple probabilities or attribute probability distributions, and study the semantics and efficient processing of queries.

Keywords

Query Processing Selection Condition Variation Distance Joint Probability Distribution Uncertain Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbará, D., Garcia-Molina, H., Porter, D.: The Management of Probabilistic Data. IEEE Trans. Knowl. Data Eng. 4(5), 487–502 (1992)CrossRefGoogle Scholar
  2. Benjelloun, O., Das Sarma, A., Halevy, A., Widom, J.: ULDBs: Databases with Uncertainty and Lineage. In: VLDB (2006)Google Scholar
  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2007)Google Scholar
  4. Block, C., Collins, J., Ketter, W.: Agent-based competitive simulation: Exploring future retail energy markets. In: Twelfth International Con-ference on Electronic Commerce, ICEC 2010, pp. 67–76. ACM (August 2010)Google Scholar
  5. Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting, 2nd edn. Springer Texts in Statistics (2002)Google Scholar
  6. Burton, P., et al.: Size matters: just how big is BIG? – Quanti-fying realistic sample size requirements for human genome epidemiology. International Journal of Epidemiology 38, 263–273 (2009)CrossRefGoogle Scholar
  7. Cavallo, R., Pittarelli, M.: The Theory of Probabilistic Databases. In: VLDB, pp. 71–9 (1987)Google Scholar
  8. de Campos, L.M., Huete, J.F., Moral, S.: Uncertainty Management Using Probability Intervals. In: Proc. International Conference on Information Processing and Management of Uncertainty (IPMU 1994), pp. 190–199 (1994)Google Scholar
  9. Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: SIGMOD (2003)Google Scholar
  10. Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J., Xia, Y.: Efficient Join Processing over Uncertain Data. In: CIKM (2006)Google Scholar
  11. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB (2004)Google Scholar
  12. Dekhtyar, A., Goldsmith, J., Hawkes, S.R.: Semistructured Probalistic Databases. In: Proc. SSDBM, pp. 36–45 (2001)Google Scholar
  13. Dekhtyar, A., Ross, R.B., Subrahmanian, V.S.: Probabilistic temporal databases, I: algebra. ACM Trans. Database Syst. 26(1), 41–95 (2001)zbMATHCrossRefGoogle Scholar
  14. Dekhtyar, A., Kevin Mathias, K., Gutti, P.: Structured Que-ries for Semistructured Probabilistic Data. In: Proc. 2nd Twente Data Manage-ment Workshop (TDM), pp. 11–18 (June 2006)Google Scholar
  15. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: VLDB (2004)Google Scholar
  16. DeWitt, D., Naughton, J., Schneider, D.: An Evaluation of Non-Equijoin Algorithms. In: VLDB (1991)Google Scholar
  17. Dey, D., Sarkar, S.: A Probabilistic Relational Model and Algebra. ACM Trans. Database Syst. 21(3), 339–369 (1996)CrossRefGoogle Scholar
  18. Dong, X., Halevy, A., Yu, C.: Data integration with uncer-tainty. The VLDB Journal (April 2009)Google Scholar
  19. Dyreson, C.E., Snodgrass, R.T.: Supporting Valid-Time Indeterminacy. ACM Trans. Database Syst. 23(1), 1–57 (1998)CrossRefGoogle Scholar
  20. Ge, T.: Join Queries on Uncertain Data: Semantics and Efficient Processing. In: The Proceedings of the IEEE 27th International Conference on Data Engineering (ICDE 2011), Hannover, Germany (April 2011)Google Scholar
  21. Ge, T., Li, Z.: Approximate Substring Matching over Uncertain Strings. The Proceedings of the VLDB Endowment (PVLDB Journal) 4(11), 772–782 (2011)Google Scholar
  22. Ge, T., Zdonik, S.: Handling Uncertain Data in Array Database Systems. In: Proceedings of the IEEE 24th International Conference on Data Engineering (ICDE 2008), Cancun, Mexico (April 2008)Google Scholar
  23. Goldsmith, J., Dekhtyar, A., Zhao, W.: Can Probabilistic Databases Help Elect Qualified Officials? In: Proceedings FLAIRS 2003 Conference, pp. 501–505 (2003)Google Scholar
  24. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford (2001)Google Scholar
  25. Halpern, J.: An Analysis of First-order Logic of Probability. Artificial Intelligence 46(3), 311–350 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A Probabilistic Semistructured Data Model and Algebra. In: ICDE (2003)Google Scholar
  27. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic Interval XML. In: ICDT 2003, pp. 358–374 (2003)Google Scholar
  28. Jaffray, J.: Bayesian Updating and Belief Functions. IEEE Trans. on Systems, Man and Cybernetics 22(5), 1144–1152 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  29. Jampani, R., Xu, F., Wu, M., Perez, L., Jermaine, C., Haas, P.: MCDB: A Monte Carlo Approach to Managing Uncertain Data. In: SIGMOD (2008)Google Scholar
  30. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic String Similarity Joins. In: SIGMOD, pp. 327–338 (2010)Google Scholar
  31. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. In: SIGMOD (2001)Google Scholar
  32. Komatsu, K., et al.: Gene expression profiling following constitutive activation of MEK1 and transformation of rat intestinal epithelial cells. Molecular Cancer 5, 63 (2006)CrossRefGoogle Scholar
  33. Kornatzky, Y., Shimony, S.E.: A Probabilistic Object-Oriented Data Model. Data Knowl. Eng. 12(2), 143–166 (1994)CrossRefGoogle Scholar
  34. Koudas, N., Sevcik, K.: High Dimensional Similarity Joins: Algorithms and Performance Evaluation. In: TKDE (2000)Google Scholar
  35. Lakshmanan, L.V.S., Leone, N., Ross, R.B., Subrahmanian, V.S.: ProbView: A Flexible Probabilistic Database System. ACM Trans. Database Syst. 22(3), 419–469 (1997)CrossRefGoogle Scholar
  36. Mann, M., Hendrickson, R., Pandey, A.: Analysis of Proteins and Proteomes by Mass Spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001)CrossRefGoogle Scholar
  37. McDonald, M.: To Build a Better Grid. NY Times. July 28 (2011)Google Scholar
  38. Mitzenmacher, M., Upfal, E.: Probability & Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge U. Press (2005)Google Scholar
  39. Nierman, A., Jagadish, H. V.: ProTDB: Probabilistic Data in XML. In: VLDB 2002, pp. 646–657 (2002) Google Scholar
  40. Nilsson, N.J.: Probabilistic Logic. Artificial Intelligence 28(1), 71–87 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  41. Ng, R., Subrahmanian, V.S.: Probabilistic Logic Programming. Inf. Comput. 101(2), 150–201 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers (1988)Google Scholar
  43. Rosson, E.: Native XML Support for Semistructured Probabilistic Data Management, M.S. Thesis, Department of Computer Science, California Polytechnic State University (May 2008)Google Scholar
  44. Szewczyk, R., et al.: An analysis of a large scale habitat monitoring application. In: SenSys (2004)Google Scholar
  45. Tatbul, N., Buller, M., Hoyt, R., Mullen, S., Zdonik, S.: Confidence-based Data Management for Personal Area Sensor Networks. In: DMSN (2004)Google Scholar
  46. Thiagarajan, A., Ravindranath, L., LaCurts, K., Mad-den, S., Balakrishnan, H., Toledo, S., Eriksson, J.: VTrack: Accurate, Energy-Aware Road Traffic Delay Estimation Using Mobile Phones. In: SenSys (2009)Google Scholar
  47. Tran, T., Peng, L., Li, B., Diao, Y., Liu, A.: PODS: A New Model and Processing Algorithms for Uncertain Data Streams. In: SIGMOD (2010)Google Scholar
  48. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall (1991)Google Scholar
  49. Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertainty. Int. J. Approx. Reasoning 24(2-3), 149–170 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  50. Zhao, W., Dekhtyar, A., Goldsmith, J.: Query algebra operations for interval probabilities. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 527–536. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  51. Zhao, W., Dekhtyar, A., Goldsmith, J.: Databases for interval probabilities. Int. J. Intell. Syst. 19(9), 789–815 (2004)zbMATHCrossRefGoogle Scholar
  52. Zhao, W., Dekhtyar, A., Goldsmith, J.: A Framework for Management of Semistructured Probabilistic Data. J. Intell. Inf. Syst. 25(3), 293–332 (2005)zbMATHCrossRefGoogle Scholar
  53. Zimányi, E.: Query Evaluation in Probabilistic Relational Databases. Theor. Comput. Sci. 171(1-2), 179–219 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of MassachusettsLowellUSA
  2. 2.California Polytechnic State UniversitySan Luis ObispoUSA
  3. 3.University of KentuckyLexingtonUSA

Personalised recommendations