Research in Probabilistic Spatiotemporal Databases: The SPOT Framework

  • John Grant
  • Francesco Parisi
  • V. S. Subrahmanian
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 304)


We start by providing an overview of research on probabilistic spatiotemporal databases. The bulk of the paper is a review of our previous results about probabilistic spatiotemporal databases using the SPOT approach. Presently these results are scattered in various papers and it is useful to provide a uniform overview. We also present numerous interesting research problems using the SPOT framework for probabilistic spatiotemporal databases that await further work.


Probability Interval Neighbor Query Deductive Database Optimistic Answer Probabilistic Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. Journal of Computer and System Sciences 66(1), 207–243 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Barbará, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE TKDE 4(5), 487–502 (1992)Google Scholar
  4. 4.
    Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with uncertainty and lineage. In: VLDB, pp. 953–964 (2006)Google Scholar
  5. 5.
    Bennett, B.: Modal logics for qualitative spatial reasoning. Journal of the Interest Group on Pure and Applied Logic 4, 23–45 (1996)zbMATHGoogle Scholar
  6. 6.
    Brusoni, V., Console, L., Terenziani, P., Pernici, B.: Extending temporal relational databases to deal with imprecise and qualitative temporal information. In: Clifford, S., Tuzhilin, A. (eds.) Intl. Workshop on Recent Advances in Temporal Databases, pp. 3–22. Springer (1995)Google Scholar
  7. 7.
    Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB Journal 15, 211–228 (2006)CrossRefGoogle Scholar
  8. 8.
    Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB, pp. 71–81 (1987)Google Scholar
  9. 9.
    Chen, Y.F., Qin, X.L., Liu, L.: Uncertain distance-based range queries over uncertain moving objects. J. Comput. Sci. Technol. 25(5), 982–998 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chung, B.S.E., Lee, W.C., Chen, A.L.P.: Processing probabilistic spatio-temporal range queries over moving objects with uncertainty. In: EDBT, pp. 60–71 (2009)Google Scholar
  11. 11.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. Inf. 46(1-2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on existentially uncertain data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J 16(4), 523–544 (2007)CrossRefGoogle Scholar
  14. 14.
    Dekhtyar, A., Dekhtyar, M.I.: Possible worlds semantics for probabilistic logic programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 137–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database Syst. 21(3), 339–369 (1996)CrossRefGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man and Cybernetics 19(4), 729–744 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dutta, S.: Generalized events in temporal databases. In: Proc. 5th Intl. Conf. on Data Engineering, pp. 118–126 (1989)Google Scholar
  18. 18.
    Eiter, T., Lukasiewicz, T., Walter, M.: A data model and algebra for probabilistic complex values. Ann. Math. Artif. Intell. 33(2-4), 205–252 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1/2), 78–128 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Fusun Yaman, D.N., Subrahmanian, V.: The logic of motion. In: Proc. 9th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 85–94 (2004)Google Scholar
  21. 21.
    Fusun Yaman, D.N., Subrahmanian, V.: Going far, logically. In: Proc. IJCAI 2005, pp. 615–620 (2005)Google Scholar
  22. 22.
    Fusun Yaman, D.N., Subrahmanian, V.: A motion closed world assumption. In: Proc. IJCAI 2005, pp. 621–626 (2005)Google Scholar
  23. 23.
    Cohn, A.G., Magee, D.R., Galata, A., Hogg, D.C., Hazarika, S.M.: Towards an architecture for cognitive vision using qualitative spatio-temporal representations and abduction. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 232–248. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of spatio-temporal logics. In: FLAIRS Conference, pp. 460–464 (2003)Google Scholar
  25. 25.
    Gadia, S., Nair, S., Poon, Y.: Incomplete infromation in relational temporal databases. In: Proc. Intl. Conf. on Very Large Databases (1992)Google Scholar
  26. 26.
    Galton, A.: Temporal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2008 edn. (2008)Google Scholar
  27. 27.
    Grant, J., Parisi, F., Parker, A., Subrahmanian, V.S.: An agm-style belief revision mechanism for probabilistic spatio-temporal logics. Artif. Intell. 174(1), 72–104 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Güntzer, U., Kiessling, W., Thöne, H.: New direction for uncertainty reasoning in deductive databases. In: Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data, SIGMOD 1991, pp. 178–187. ACM, New York (1991), CrossRefGoogle Scholar
  29. 29.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Hansson, H., Jonsson, B.: Logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  31. 31.
    Jampani, R., Xu, F., Wu, M., Perez, L.L., Jermaine, C., Haas, P.J.: MCDB: a monte carlo approach to managing uncertain data. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 687–700. ACM, New York (2008)CrossRefGoogle Scholar
  32. 32.
    Jeansoulin, R., Papini, O., Prade, H., Schockaert, S.: Introduction: uncertainty issues in spatial information. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty. In: ICDT, pp. 102–117 (1988)Google Scholar
  34. 34.
    Koch, C., Olteanu, D.: Conditioning probabilistic databases. Proceedings of the VLDB Endowment archive 1(1), 313–325 (2008)Google Scholar
  35. 35.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 261–272. ACM, New York (1999)CrossRefGoogle Scholar
  36. 36.
    Koubarakis, M.: Database models for infinite and indefinite temporal information. Information Systems 19(2), 141–173 (1994)CrossRefGoogle Scholar
  37. 37.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  38. 38.
    Lakshmanan, L.V., Sadri, F.: Modeling uncertainty in deductive databases. In: Karagiannis, D. (ed.) DEXA 1994. LNCS, vol. 856, pp. 724–733. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  39. 39.
    Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE Trans. on Knowl. and Data Eng. 13(4), 554–570 (2001)CrossRefGoogle Scholar
  40. 40.
    Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE Transactions on Knowledge and Data Engineering 20(6), 809–824 (2008), CrossRefGoogle Scholar
  41. 41.
    Lukasiewicz, T.: Probabilistic logic programming. In: ECAI, pp. 388–392 (1998)Google Scholar
  42. 42.
    Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 279–292. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  43. 43.
    Merz, S., Wirsing, M., Zappe, J.: A spatio-temporal logic for the specification and refinement of mobile systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 87–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  44. 44.
    Muller, P.: Space-Time as a Primitive for Space and Motion. In: FOIS, pp. 63–76. IOS Press, Amsterdam (1998), Google Scholar
  45. 45.
    Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992), MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Ni, J., Ravishankar, C.V., Bhanu, B.: Probabilistic spatial database operations. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 140–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  47. 47.
    Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling cautious selection in spatial probabilistic temporal databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  48. 48.
    Parker, A., Infantes, G., Grant, J., Subrahmanian, V.: An agm-based belief revision mechanism for probabilistic spatio-temporal logics. In: AAAI (2008)Google Scholar
  49. 49.
    Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: Spot databases: Efficient consistency checking and optimistic selection in probabilistic spatial databases. IEEE TKDE 21(1), 92–107 (2009)Google Scholar
  50. 50.
    Parker, A., Subrahmanian, V.S., Grant, J.: A logical formulation of probabilistic spatial databases. IEEE TKDE, 1541–1556 (2007)Google Scholar
  51. 51.
    Parker, A., Yaman, F., Nau, D., Subrahmanian, V.: Probabilistic go theories. In: IJCAI, pp. 501–506 (2007)Google Scholar
  52. 52.
    Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future positions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)CrossRefGoogle Scholar
  53. 53.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB (2000)Google Scholar
  54. 54.
    Pittarelli, M.: An algebra for probabilistic databases. IEEE TKDE 6(2), 293–303 (1994)Google Scholar
  55. 55.
    Rajagopalan, R., Kuipers, B.: Qualitative spatial reasoning about objects in motion: Application to physics problem solving. In: IJCAI 1994, San Antonio, TX, pp. 238–245 (1994)Google Scholar
  56. 56.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: International Conference on Knowledge Representation and Reasoning, KR 1992, pp. 165–176. Morgan Kaufmann (1992)Google Scholar
  57. 57.
    Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Journal of the ACM 52(1), 54–101 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Shanahan, M.: Default reasoning about spatial occupancy. Artif. Intell. 74(1), 147–163 (1995), Google Scholar
  59. 59.
    Snodgrass, R.: The temporal query language tquel. In: Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS 1984, pp. 204–213. ACM, New York (1984), CrossRefGoogle Scholar
  60. 60.
    Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: VLDB, pp. 922–933 (2005)Google Scholar
  61. 61.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 790–801. VLDB Endowment (2003)Google Scholar
  62. 62.
    Wolter, F., Zakharyaschev, M.: Spatial reasoning in rcc-8 with boolean region terms. In: Principles of Knowledge Representation and Reasoning, ECAI 2000, pp. 244–248. IOS Press, Berlin (2000)Google Scholar
  63. 63.
    Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning, KR 2000, pp. 3–14. Morgan Kaufmann, San Francisco (2000), Google Scholar
  64. 64.
    Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In: Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M., Léger, A., Naumann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International Conference Proceeding Series, vol. 426, pp. 335–346. ACM (2010)Google Scholar
  65. 65.
    Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncertain moving objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)Google Scholar
  66. 66.
    Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries for uncertain trajectories on road networks. In: Ailamaki, A., Amer-Yahia, S., Patel, J.M., Risch, T., Senellart, P., Stoyanovich, J. (eds.) EDBT, pp. 283–294. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John Grant
    • 1
    • 2
  • Francesco Parisi
    • 3
  • V. S. Subrahmanian
    • 2
  1. 1.Towson UniversityTowsonUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.Università della CalabriaRende (CS)Italy

Personalised recommendations