Multiresolution Framework Based Global Optimization Technique for Multimodal Image Registration

  • Arpita Das
  • Mahua Bhattacharya
Part of the Communications in Computer and Information Science book series (CCIS, volume 276)


This study has examined the problem of accurate optimization for fully automatic registration of brain images. Though the proposed global optimization techniques produce encouraging results, their speed of convergence is slow in compare to other local optimization techniques. To speed up the optimization techniques, we introduce multiresolution framework and gain a hierarchical knowledge of transformation parameters. This approach has tried to avoid the stuck in problem of local optimization technique and enhances the speed of convergence of high-dimensional searching algorithms.


Registration Multiresolution Global Optimization Convergence rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maintz, J.B.A., Viergever, M.: A Survey of Medical Image Registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  2. 2.
    Radau, P.E., Slomka, P.J., Julin, P., Svensson, L., Wahlund, L.-O.: Evaluation of linear registration algorithms for brain SPECT and the errors due to hypoperfusion lesions. Medical Physics 28(8), 1660–1668 (2001)CrossRefGoogle Scholar
  3. 3.
    Shekhar, R., Zagrodsky, V.: Mutual information-based rigid and nonrigid registration of ultrasound volumes. IEEE Trans. Medical Imaging 21(1), 9–22 (2002)CrossRefGoogle Scholar
  4. 4.
    Ding, L., Goshtasby, A., Satter, M.: Volume image registration by template matching. Image and Vision Computing 19(12), 821–832 (2001)CrossRefGoogle Scholar
  5. 5.
    Erdi, Y.E., Rosenzweig, K., Erdi, A.K., Macapinlac, H.A., Hu, Y.-C., Braban, L.E., Humm, J.L., Squire, O.D., Chui, C.-S., Larson, S.M., Yorke, E.D.: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiotherapy and Oncology 62(1), 51–60 (2002)CrossRefGoogle Scholar
  6. 6.
    Kagadis, G.C., Delibasis, K.K., Matsopoulos, G.K., Mouravliansky, N.A., Asvestas, P.A.: A comparative study of surface and volume-based techniques for the automatic registration between CT and SPECT brain images. Medical Physics 29(2), 201–213 (2002)CrossRefGoogle Scholar
  7. 7.
    Zagrodsky, V., Shekhar, R., Cornhill, J.F.: Multifunction extension of simplex optimization method for mutual information-based registration of ultrasound volumes. In: Sonka, M., Hanson, K.M. (eds.) Medical Imaging: Image Processing. Proc. SPIE, vol. 4322, pp. 508–515. SPIE Press, Bellingham (2001)Google Scholar
  8. 8.
    Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage 17, 825–841 (2002)CrossRefGoogle Scholar
  9. 9.
    Wachowiak, M.P., Smolíková, R., Zheng, Y., Zurada, J.M., Elmaghraby, A.S.: An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Trans. Evolutionary Computation 8(3), 289–301 (2004)CrossRefGoogle Scholar
  10. 10.
    Lomonosov, E., Chetverikov, D.: Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters 27(11), 1201–1208 (2006)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.W., Lin, C.-L., Mimori, A.: Multimodal Medical Image Registration Using Particle Swarm Optimization. In: 8th Int. Conf. on Intelligent Systems Design and Applications (2008)Google Scholar
  12. 12.
    Das, A., Bhattacharya, M.: Affine Based Registration of CT and MR Modality Images of Human Brain using Multiresolution Approaches: Comparative Study on Genetic Algorithm and Particle Swarm Optimization. Int. Journal of Neural Computing & Applications 2(2), 223–237 (2011)CrossRefGoogle Scholar
  13. 13.
    Lehmann, T., Goerke, C., Schmitt, W., Kaupp, A., Repges, R.: A rotation-extended cepstrum technique optimized by systematic analysis of various sets of X-ray images. In: Loew, M.H., Hanson, K.M. (eds.) Medical Imaging: Image Processing, vol. 2710, pp. 390–401. SPIE, Bellingham (1996)Google Scholar
  14. 14.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  15. 15.
    Granville, V., Krivanek, M., Rasson, J.-P.: Simulated annealing: A proof of convergence. IEEE Trans. Pattern Analysis and Machine Intelligence 16(6), 652–656 (1994)CrossRefGoogle Scholar
  16. 16.
    Russell, S., Norvig, P.: Artificial Intelligence: a modern approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arpita Das
    • 1
  • Mahua Bhattacharya
    • 2
  1. 1.Department of Radio Physics and ElectronicsUniversity of CalcuttaIndia
  2. 2.Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations