Fuzzy Clustering of Image Trademark Database and Pre-processing Using Adaptive Filter and Karhunen-Loève Transform

  • Akriti Nigam
  • Ajay Indoria
  • R. C. Tripathi
Part of the Communications in Computer and Information Science book series (CCIS, volume 276)


In this paper an efficient preprocessing module has been described which focuses on building a trademark database that can be used for developing a trademark retrieval system. The preprocessing module focuses on noise removal from the trademark images using an adaptive filtering technique using Wiener filters, followed by Karhunen-Loève Transform that makes the trademark search process rotation invariant by rotating the object along positive y direction. Since the registered trademarks are huge in number and will increase invariantly in the future it will be strenuous for the search system to search for similarity in such huge database. Intention is to reduce the search space hence Fuzzy Clustering has been applied.


Noise removal Weiner filter Hotelling transform Karhunen- Loève transform Fuzzy Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wei, C.-H., Li, Y., Chau, W.-Y., Li, C.-T.: Trademark image retrieval using synthetic features for describing global shape and interior structure. Pattern Recognition 42, 386–394 (2009)MATHCrossRefGoogle Scholar
  2. 2.
    Pok, G., Liu, J.-C., Nair, A.: Selective Removal of Impulse Noise Based on Homogeneity Level Information. IEEE Transactions on Image Processing 12(1), 85–92 (2003)CrossRefGoogle Scholar
  3. 3.
    Garnett, R., Huegerich, T., Chui, C.: A Universal Noise Removal Algorithm with an Impulse Detector. IEEE Transactions on Image Processing 14, 1747–1754 (2005)CrossRefGoogle Scholar
  4. 4.
    SaidAwad, A., Man, H.: Similar neighbor criterion for impulse noise removal in images 64, 904–915 (October 2010)Google Scholar
  5. 5.
    Yin, P.-Y., Yeh, C.-C.: Content-based retrieval from trademark databases 23, 113–126 (January 2002)Google Scholar
  6. 6.
    Patel, P., Tripathi, A., Majhi, B., Tripathy, C.R.: A New Adaptive Median Filtering Technique for Removal of Impulse Noise from Images. In: Proceedings of the 2011 International Conference on Communication, Computing & Security, ICCCS 2011, pp. 462–467 (2011)Google Scholar
  7. 7.
    Sanchez-Marin, F.J.: Image Registration Of Gray-Scale Images Using The Hotelling Transform. In: Conference on Video I Image Processing and Multimedia Communications, pp. 119–123 (July 2003)Google Scholar
  8. 8.
    Ben Hamza, A., Luque, P., Martinez, J., Roman, R.: Removing noise and preserving details with relaxed median filters. J. Math. Image Vision 11(2), 161–177 (1999)CrossRefGoogle Scholar
  9. 9.
    Marcos, E., Acuna, C.J., Vela, B., Cavero, J.M., Hernandez, J.A.: A database for medical image management. Computer Methods and Programs in Biomedicine 86, 255–269 (2007)CrossRefGoogle Scholar
  10. 10.
    Shyu, M.-L., Chen, S.-C., Chen, M., Zhang, C.: A Unified Framework for Image Database Clustering and Content-based Retrieval. In: MMDB 2004, pp. 19–27. ACM (November 2004)Google Scholar
  11. 11.
    Luo, W., Dang, D.: An efficient method for the removal of impulse noise. In: IEEE International Conference on Image Processing, Atlanta, pp. 2601–2604 (October 2006)Google Scholar
  12. 12.
    Nigam, A., Garg, A.K., Tripathi, R.C.: Content Based Image Retrieval by integrating shape with color and texture informationGoogle Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall (2002)Google Scholar
  14. 14.
    Intellectual Property India website,
  15. 15.
    Ur Rehman, M.A.: A New Scale Invariant Optimized Chain Code for Nastaliq Character Representation. In: IEEE Conference on Computer Modeling and Simulation, pp. 400–403 (2010)Google Scholar
  16. 16.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)MATHGoogle Scholar
  17. 17.
    Bhagat, A.P., Atique, M.: Medical Image Retrieval, Indexing and Enhancement Techniques: A Survey. In: ICCCS 2011, pp. 387–390. ACM (2011)Google Scholar
  18. 18.
    Kim, W.Y., Kim, Y.S.: A region based shape descriptor using Zernike moments. Signal Processing: Image Communications 16(1-2), 95–102 (2000)CrossRefGoogle Scholar
  19. 19.
    Zhang, D.S., Lu, G.: A comparative study on shape retrieval using Fourier descriptors with different shape signatures. In: Proc. International Conference on Intelligent Multimedia and Distance Education, ICIMADE 2001 (2001)Google Scholar
  20. 20.
    Chauhan, R., Kaur, H., AfsharAlam, M.: Data Clustering Method for Discovering Clusters in Spatial Cancer Databases. International Journal of Computer Applications (0975 – 8887) 10(6) (November 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Akriti Nigam
    • 1
  • Ajay Indoria
    • 1
  • R. C. Tripathi
    • 1
  1. 1.Indian Institute of Information TechnologyAllahabadIndia

Personalised recommendations