Advertisement

Semantic Annotation of Web Documents for Efficient Information Retrieval

  • Rashmi Chauhan
  • Rayan H. Goudar
Part of the Communications in Computer and Information Science book series (CCIS, volume 276)

Abstract

Searching the vast and distributed structure of the web requires the efficient search schemes. Semantic annotation is used to associate the meaningful tags with a document to perform semantic search. This paper puts forward an automatic approach for annotating web documents for efficient information retrieval. The proposed algorithm for semantic annotation constitutes five rules based on ontology and provides the semantic tags along with the degree of correlation between a tag and the consequent web document. As the annotation would be done automatically, the results obtained for a query would always be relevant and thus the improved precision and recall.

Keywords

ontology semantic information retrieval semantic annotation Ranking semantic index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, Y., He, H., Zhao, H., Meng, W., Yu, C.: Annotating Search Results From Web Databases. IEEE Transactions on Knowledge and Data Engineering (2011)Google Scholar
  2. 2.
    Sánchez, D., Isern, D., Millan, M.: Content annotation for the semantic web: an automatic Web Based Approach. Knowl Inf. Syst. 27, 393–418 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Hou, J., Xie, Z., Wang, X., Qu, C., Li, H.: Problems and Solutions of Web Search Engines. In: 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), April 16-18, pp. 5134–5137 (2011)Google Scholar
  4. 4.
    Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In: International Workshop on Formal Ontology, Padova, Italy (March 1993/1995) Google Scholar
  5. 5.
    Missikoff, M., Navigli, R., Velardi, P.: The Usable Ontology: An Environment for Building and Assessing a Domain Ontology. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Garrid, A.L., G’omez, O., Ilarri, S., Mena, E.: NASS: News Annotation Semantic System. In: 2011 23rd IEEE International Conference on Tools with Artificial Intelligence (2011)Google Scholar
  7. 7.
    Liu, C.-H., Chen, H.-C., Jain, J.-L., Chen, J.-Y.: Semi-automatic Annotation System for OWL-based Semantic Search. In: International Conference on Complex, Intelligent and Software Intensive Systems (2009)Google Scholar
  8. 8.
    Ma, B., Yang, Y., Zhou, X., Zhou, J.: An Ontology-based Semantic Retrieval Model for Uyghur Search Engine. IEEE (2010) 978-1-4244-6359Google Scholar
  9. 9.
    Tenier, S., Toussaint, Y., Napoli, A., Polanco, X.: Instantiation of relations for semantic annotation. In: International Conference on Web Intelligence. IEEE (2006)Google Scholar
  10. 10.
    Rahayu, S.B., Noah, S.A., Wardhana, A.A.: Ranking and Scoring Semantic Document Annotation. In: International Conference on Science and Social Research. IEEE (2010)Google Scholar
  11. 11.
    Andreasen, T., Bulskov, H., Jensen, P.A., Lassen, T.: The On-toGram-Approach to Text Processing and Semantic Relation Spotting for Indexing. In: International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rashmi Chauhan
    • 1
  • Rayan H. Goudar
    • 1
  1. 1.Department of Computer Science and EngineeringIndia

Personalised recommendations