An Approach to Identifying False Traces in Process Event Logs

  • Hedong Yang
  • Lijie Wen
  • Jianmin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7819)


By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such “polluted” logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated.


process mining event log business process management noise identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aires da Silva, G., Ferreira, D.R.: Applying hidden markov models to process mining. In: Rocha, A., Restivo, F., Reis, L.P., Ao, S.T. (eds.) Sistemas e Tecnologias de Informação: Actas da 4a. Conferência Ibérica de Sistemas e Tecnologias de Informação, pp. 207–210. AISTI/FEUP/UPF (2009)Google Scholar
  2. 2.
    Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cook, J., Du, Z., Liu, C., Wolf, A.: Discovering models of behavior for concurrent workflows. Computers in Industry 53(3), 297–319 (2004)CrossRefGoogle Scholar
  4. 4.
    Donoho, D.: De-noising by soft-thresholding. IEEE Transactions on Information Theory 41(3), 613–627 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley Interscience, Hoboken (2005)Google Scholar
  6. 6.
    Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., Bosch, A.: A Rule-Based Approach for Process Discovery: Dealing with Noise and Imbalance in Process Logs. Data Min. Knowl. Discov. 13(1), 67–87 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Transactions on Image Processing 12(11), 1338–1351 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  9. 9.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)zbMATHGoogle Scholar
  10. 10.
    van der Aalst, W.M.P.: Process mining: Overview and opportunities. ACM Trans. Management Inf. Syst. 3(2), 1–17 (2012)Google Scholar
  11. 11.
    van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland, J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., La Rosa, M., Maggi, F., Malerba, D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Seguel Pérez, H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2004)Google Scholar
  13. 13.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  14. 14.
    van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process Mining: Overview and Outlook of Petri Net Discovery Algorithms. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data Using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  16. 16.
    Xiong, H., Pandey, G., Steinbach, M., Kumar, V.: Enhancing Data Analysis with Noise Removal. IEEE Transactions on Knowledge and Data Engineering 18(3), 304–319 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hedong Yang
    • 1
  • Lijie Wen
    • 1
  • Jianmin Wang
    • 1
  1. 1.School of SoftwareTsinghua UniversityBeijingChina

Personalised recommendations