Skip to main content

Discovering Semantics from Multiple Correlated Time Series Stream

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:


In this paper, we study a challenging problem of mining data generating rules and state transforming rules (i.e., semantics) underneath multiple correlated time series streams. A novel Correlation field-based Semantics Learning Framework (CfSLF) is proposed to learn the semantic. In the framework, we use Hidden Markov Random Field (HMRF) method to model relationship between latent states and observations in multiple correlated time series to learn data generating rules. The transforming rules are learned from corresponding latent state sequence of multiple time series based on Markov chain character. The reusable semantics learned by CfSLF can be fed into various analysis tools, such as prediction or anomaly detection. Moreover, we present two algorithms based on the semantics, which can later be applied to next-n step prediction and anomaly detection. Experiments on real world data sets demonstrate the efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Zhang, C., Weng, N., Chang, J., Zhou, A.: Detecting Abnormal Trend Evolution over Multiple Data Streams. In: Chen, L., Liu, C., Zhang, X., Wang, S., Strasunskas, D., Tomassen, S.L., Rao, J., Li, W.-S., Candan, K.S., Chiu, D.K.W., Zhuang, Y., Ellis, C.A., Kim, K.-H. (eds.) WCMT 2009. LNCS, vol. 5731, pp. 285–296. Springer, Heidelberg (2009)

    Google Scholar 

  2. Zhang, P., Gao, B.J., Liu, P., Shi, Y., Guo, L.: A framework for application-driven classification of data streams. Neurocomputing 92, 170–182 (2012)

    Article  Google Scholar 

  3. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming Pattern Discovery in Multiple Time-Series. In: Proceedings of VLDB 2005 (2005)

    Google Scholar 

  4. Chan, P.K., Mahoney, M.V.: Modeling Multiple Time Series for Anomaly Detection. In: Proceedings of ICDM

    Google Scholar 

  5. Hirose, S., Yamanishi, K., Nakata, T., Fujimaki, R.: ]Network Anomaly Detection based on Eigen Equation Compression. In: Proceedings of SIGKDD 2009 (2009)

    Google Scholar 

  6. Qiao, Z., He, J., Cao, J., Huang, G., Zhang, P.: Multiple Time Series Anomaly Detection Based on Compression and Correlation Analysis: A Medical Surveillance Case Study. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 294–305. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Fujimaki, R., Nakata, T., Tsukahara, H., Sato, A., Yamanishi, K.: Mining Abnormal Patterns from Heterogeneous Time-Series with Irrelevant Features for Fault Event Detection. Statistical Analysis and Data Mining 2 (2009)

    Google Scholar 

  8. Zhang, P., Gao, B.J., Zhu, X., Guo, L.: Enabling Fast Lazy Learning for Data Streams. In: Proceedings of ICDM (2011)

    Google Scholar 

  9. Zhang, P., Zhu, X., Shi, Y., Guo, L., Wu, X.: Robust ensemble learning for mining noisy data streams. Decision Support Systems 50(2), 469–479 (2011)

    Article  Google Scholar 

  10. Stock, J.H., Watson, M.W.: Vector Autoregressions. Journal of Economic Perspectives 15(4), 101–115

    Google Scholar 

  11. Yves, N.: Total Least Squares: State-of-the-Art Regression in Numerical Analysis. SIAM Review 36 (2), 258–264

    Google Scholar 

  12. Wang, P., Wang, H., Wang, W.: Finding Semantics in Time Series. In: Proceedings of SIGMOD 2011 (2011)

    Google Scholar 

  13. Duncan, G., Gorr, W., Szczypula, J.: Forecasting Analogous Time Series, pp. 15213–13890. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  14. Pang, C., Zhang, Q., Hansen, D.P., Maeder, A.J.: Unrestricted wavelet synopses under maximum error bound. In: Proceedings of EDBT 2009 (2009)

    Google Scholar 

  15. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings of ICDM 2001 (2001)

    Google Scholar 

  16. Wang, Y., Zhou, L.: Mining complex time-series data by learning the temporal structure using bayesian techniques and markovian models. In: Proceedings of ICDM 2006 (2006)

    Google Scholar 

  17. Zhang, P., Li, J., Wang, P., Gao, B., Zhu, X., Guo, L.: Enabling Fast Prediction for Ensemble Models on Data Streams. In: Proceedings of SIGKDD 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiao, Z. et al. (2013). Discovering Semantics from Multiple Correlated Time Series Stream. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics