Advertisement

Low-Rank Matrix Recovery with Discriminant Regularization

  • Zhonglong Zheng
  • Haixin Zhang
  • Jiong Jia
  • Jianmin Zhao
  • Li Guo
  • Fangmei Fu
  • Mudan Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7819)

Abstract

Recently, image classification has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. Based on the success of low-rank matrix recovery which has been applied to statistical learning, computer vision and signal processing, this paper presents a novel low-rank matrix recovery algorithm with discriminant regularization. Standard low-rank matrix recovery algorithm decomposes the original dataset into a set of representative basis with a corresponding sparse error for modeling the raw data. Motivated by the Fisher criterion, the proposed method executes low-rank matrix recovery in a supervised manner, i.e., taking the with-class scatter and between-class scatter into account when the whole label information is available. The paper shows that the formulated model can be solved by the augmented Lagrange multipliers, and provide additional discriminating ability to the standard low-rank models for improved performance. The representative bases learned by the proposed method are encouraged to be structural coherence within the same class, and as independent as possible between classes. Numerical simulations on face recognition tasks demonstrate that the proposed algorithm is competitive with the state-of-the-art alternatives.

Keywords

Face Recognition Face Image Near Neighbor Sparse Code Matrix Completion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olshausen, B.A., Field, D.J.: Sparse coding with an over-complete basis ser: a strategy employed by v1? Vision Research 37(23), 3311–3325 (1997)CrossRefGoogle Scholar
  2. 2.
    Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456), 1273–1276 (2000)CrossRefGoogle Scholar
  3. 3.
    Wright, J., Ma, Y., Mairal, J., Spairo, G., Huang, T., Yan, S.C.: Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  4. 4.
    Wright, J., Yang, A.Y., Sastry, A.G.S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE PAMI 31(2), 210–227 (2009)CrossRefGoogle Scholar
  5. 5.
    Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR (2011)Google Scholar
  6. 6.
    Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS (2006)Google Scholar
  7. 7.
    Wagner, A., Wright, J., Ganesh, A., Zhou, Z.H., Ma, Y.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: CVPR (2009)Google Scholar
  8. 8.
    Wagner, A., Wright, J., Ganesh, A., Zhou, Z.H., Ma, Y.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. IEEE PAMI 34(2), 372–386 (2012)CrossRefGoogle Scholar
  9. 9.
    Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of ACM 58(1), 1–37 (2009)MathSciNetGoogle Scholar
  10. 10.
    Candes, E., Recht, B.: Exact low rank matrix completion via convex optimization. In: Allerton (2008)Google Scholar
  11. 11.
    Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2215 (2009)Google Scholar
  12. 12.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE PAMI 19(7), 711–720 (1997)CrossRefGoogle Scholar
  13. 13.
    Li, Z., Lin, D., Tang, X.: Nonparametric discriminant analysis for face recognition. IEEE PAMI 31(4), 755–761 (2009)CrossRefGoogle Scholar
  14. 14.
    Lu, J., Tan, Y., Wang, G.: Discriminaive multi-manifold analysis for face recognition from a single trainning sample per person. IEEE PAMI pp(99),  1 (2012)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscinces 3, 72–86 (1991)Google Scholar
  16. 16.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: For recognition using laplacianfaces. IEEE PAMI 27(3), 328–340 (2005)CrossRefGoogle Scholar
  17. 17.
    He, X., Cai, D., Niyogi, P.: Locality preserving projections. In: NIPS (2003)Google Scholar
  18. 18.
    Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE TIP 15(11), 3608–3614 (2006)Google Scholar
  19. 19.
    Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extension: A general framework for dimensionality reduction. IEEE PAMI 29(1), 40–51 (2007)CrossRefGoogle Scholar
  20. 20.
    Hua, G., Viola, P., Drucker, S.: Face recognition using discriminatively trained orthogonal rank one tensor projections. In: CVPR (2007)Google Scholar
  21. 21.
    Xue, H., Chen, S., Yang, Q.: Discriminatively regularized least-squares classification. Pattern Recognition 42(1), 93–104 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Si, S., Tao, D., Geng, B.: Bregman divergence-dased regularization for transfer subspace learning. IEEE TKDE 22(7), 929–942 (2010)Google Scholar
  23. 23.
    Lu, J., Tan, Y.: Cost-sensitive subspace learning for face recognition. In: CVPR (2010)Google Scholar
  24. 24.
    Lu, J., Tan, Y.: Regularized locality preserving projections and its extensions for face recognition. IEEE SMCB 40(3), 958–963 (2010)Google Scholar
  25. 25.
    Yuan, X., Yan, S.: classification with multi-task joint sparse representation. In: CVPR (2010)Google Scholar
  26. 26.
    Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research 12, 2297–2334 (2011)MathSciNetGoogle Scholar
  27. 27.
    Cabral, R., Costeira, J., Torre, F., Bernardino, A.: Fast incremental method for matrix completion: an application to trajectory correction. In: ICIP (2011)Google Scholar
  28. 28.
    Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low rank matrices by convex optimization. In: NIPS (2009)Google Scholar
  29. 29.
    Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR (2010)Google Scholar
  30. 30.
    Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML (2010)Google Scholar
  31. 31.
    Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: CVPR (2010)Google Scholar
  32. 32.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality constrained linear coding for image classification. In: CVPR (2010)Google Scholar
  33. 33.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE PAMI 23(6), 643–660 (2001)CrossRefGoogle Scholar
  34. 34.
    Martinez, A., Benavente, R.: The ar face database. CVC Technical Report 24 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhonglong Zheng
    • 1
  • Haixin Zhang
    • 1
  • Jiong Jia
    • 1
  • Jianmin Zhao
    • 1
  • Li Guo
    • 1
  • Fangmei Fu
    • 1
  • Mudan Yu
    • 1
  1. 1.Department of Computer ScienceZhejiang Normal UniversityJinhuaChina

Personalised recommendations