Learning Representative Nodes in Social Networks

  • Ke Sun
  • Donn Morrison
  • Eric Bruno
  • Stéphane Marchand-Maillet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7819)


We study the problem of identifying representative users in social networks from an information spreading perspective. While traditional network measures such as node degree and PageRank have been shown to work well for selecting seed users, the resulting nodes often have high neighbour overlap and thus are not optimal in terms of maximising spreading coverage. In this paper we extend a recently proposed statistical learning approach called skeleton learning (SKE) to graph datasets. The idea is to associate each node with a random representative node through Bayesian inference. By doing so, a prior distribution defined over the graph nodes emerges where representatives with high probabilities lie in key positions and are mutually exclusive, reducing neighbour overlap. Evaluation with information diffusion experiments on real scientific collaboration networks shows that seeds selected using SKE are more effective spreaders compared with those selected with traditional ranking algorithms and a state-of-the-art degree discount heuristic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  2. 2.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS 14, pp. 849–856. MIT Press (2002)Google Scholar
  3. 3.
    Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proc. SDM 2005, pp. 274–285 (2005)Google Scholar
  5. 5.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)Google Scholar
  6. 6.
    Xu, K.S., Kliger, M., Chen, Y., Woolf, P.J., Hero III, A.O.: Revealing social networks of spammers through spectral clustering. In: Proc. ICC 2009, pp. 735–740 (2009)Google Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Comput. Netw. 33(1-6), 387–401 (2000)CrossRefGoogle Scholar
  10. 10.
    Chung, F.R.K.: Spectral Graph Theory. Amer. Math. Soc. (1997)Google Scholar
  11. 11.
    Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: Proc. ICML 2005, pp. 1036–1043 (2005)Google Scholar
  12. 12.
    Agarwal, A., Chakrabarti, S.: Learning random walks to rank nodes in graphs. In: Proc. ICML 2007, pp. 9–16 (2007)Google Scholar
  13. 13.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. SIGKDD 2001, pp. 57–66 (2001)Google Scholar
  14. 14.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proc. SIGKDD 2002, pp. 61–70 (2002)Google Scholar
  15. 15.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proc. SIGKDD 2003, pp. 137–146 (2003)Google Scholar
  16. 16.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  17. 17.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Market. Lett. 12(3), 211–223 (2001)CrossRefGoogle Scholar
  18. 18.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proc. SIGKDD 2009, pp. 199–208 (2009)Google Scholar
  19. 19.
    Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identification of influential spreaders in complex networks. Nature Phys. 6(11), 889–893 (2010)CrossRefGoogle Scholar
  20. 20.
    Sun, K., Bruno, E., Marchand-Maillet, S.: Unsupervised skeleton learning for manifold denoising. In: Proc. ICPR 2012, pp. 2719–2722 (2012)Google Scholar
  21. 21.
    Hinton, G.E., Roweis, S.T.: Stochastic Neighbor Embedding. In: NIPS 15, pp. 833–840. MIT Press (2003)Google Scholar
  22. 22.
    Hein, M., Maier, M.: Manifold denoising. In: NIPS 19, pp. 561–568. MIT Press (2007)Google Scholar
  23. 23.
    Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proc. SIGKDD 2012, pp. 33–41 (2012)Google Scholar
  24. 24.
    Xu, L.: Learning algorithms for RBF functions and subspace based functions. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques, pp. 60–94. IGI Global (2009)Google Scholar
  25. 25.
    Bottou, L.: Online algorithms and stochastic approximations. In: Online Learning and Neural Networks. Cambridge University Press (1998)Google Scholar
  26. 26.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)CrossRefGoogle Scholar
  27. 27.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proc. WSDM 2011, pp. 635–644 (2011)Google Scholar
  28. 28.
    Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PLoS ONE 6(4), e18961 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ke Sun
    • 1
  • Donn Morrison
    • 2
  • Eric Bruno
    • 3
  • Stéphane Marchand-Maillet
    • 1
  1. 1.Viper Group, Computer Vision & Multimedia LaboratoryUniversity of GenevaSwitzerland
  2. 2.Unit for Information Mining & Retrieval, Digital Enterprise Research InstituteNUIGGalwayIreland
  3. 3.Knowledge Discovery & Data MiningFirmenich S.A.Switzerland

Personalised recommendations