Weiss, G.M.: Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations Newsletter 6(1), 7–19 (2004)
CrossRef
Google Scholar
Holte, R.C., Acker, L., Porter, B.W.: Concept Learning and the Problem of Small Disjuncts. In: Proc. Int’l J. Conf. Artificial Intelligence, pp. 813–818 (1989)
Google Scholar
Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)
Google Scholar
Murphy, P.M., Aha, D.W.: UCI repository of Machine learning databases. University of California Irvine, Department of Information and Computer Science
Google Scholar
Lewis, D., Catlett, J.: Heterogeneous Uncertainty Sampling for Supervised Learning. In: Proc. of the Eleventh International Conference of Machine Learning, pp. 148–156 (1994)
Google Scholar
Fawcett, T.E., Provost, F.: Adaptive Fraud Detection. Data Mining and Knowledge Discovery 3(1), 291–316 (1997)
CrossRef
Google Scholar
Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30(2/3), 195–215 (1998)
CrossRef
Google Scholar
Ling, C.X., Li, C.: Data Mining for Direct Marketing: Problems and Solutions. In: Proc. Int’l Conf. on Knowledge Discovery & Data Mining (1998)
Google Scholar
Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to Classification. In: Proc. of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 518–523 (1995)
Google Scholar
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(10), 1263–1284 (2009)
Google Scholar
Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory Under Sampling for Class Imbalance Learning. In: Proc. Int’l Conf. Data Mining, pp. 965–969 (2006)
Google Scholar
Zhang, J., Mani, I.: KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proc. Int’l Conf. Machine Learning, ICML 2003, Workshop Learning from Imbalanced Data Sets (2003)
Google Scholar
Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In: Proc. Int’l Conf. Machine Learning, pp. 179–186 (1997)
Google Scholar
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29 (2004)
CrossRef
Google Scholar
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-Sampling Technique. J. Artificial Intelligence Research 16, 321–357 (2002)
MATH
Google Scholar
Cieslak, D.A., Chawla, N.V.: Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data. In: Proc. IEEE Int’l Conf. Data Mining, pp. 143–152 (2008)
Google Scholar
He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In: Proc. Int’l J. Conf. Neural Networks, pp. 1322–1328 (2008)
Google Scholar
Chen, S., He, H., Garcia, E.A.: RAMOBoost: Ranked Minority Oversampling in Boosting. IEEE Trans. Neural Networks 21(20), 1624–1642 (2010)
CrossRef
Google Scholar
Barua, S., Islam, M. M., Murase, K.: A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 735–744. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis 6(5), 429–449 (2000)
Google Scholar
Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Google Scholar
UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/
Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL-2003-4, HP Labs (2003)
Google Scholar
Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A step-by-Step Approach. Wiley, New York (2009)
MATH
CrossRef
Google Scholar
Critical Value Table of Wilcoxon Signed-Ranks Test,
http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf