Advertisement

ProWSyn: Proximity Weighted Synthetic Oversampling Technique for Imbalanced Data Set Learning

  • Sukarna Barua
  • Md. Monirul Islam
  • Kazuyuki Murase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7819)

Abstract

An imbalanced data set creates severe problems for the classifier as number of samples of one class (majority) is much higher than the other class (minority). Synthetic oversampling methods address this problem by generating new synthetic minority class samples. To distribute the synthetic samples effectively, recent approaches create weight values for original minority samples based on their importance and distribute synthetic samples according to weight values. However, most of the existing algorithms create inappropriate weights and in many cases, they cannot generate the required weight values for the minority samples. This results in a poor distribution of generated synthetic samples. In this respect, this paper presents a new synthetic oversampling algorithm, Proximity Weighted Synthetic Oversampling Technique (ProWSyn). Our proposed algorithm generate effective weight values for the minority data samples based on sample’s proximity information, i.e., distance from boundary which results in a proper distribution of generated synthetic samples across the minority data set. Simulation results on some real world datasets shows the effectiveness of the proposed method showing improvements in various assessment metrics such as AUC, F-measure, and G-mean.

Keywords

Imbalanced learning clustering synthetic oversampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss, G.M.: Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations Newsletter 6(1), 7–19 (2004)CrossRefGoogle Scholar
  2. 2.
    Holte, R.C., Acker, L., Porter, B.W.: Concept Learning and the Problem of Small Disjuncts. In: Proc. Int’l J. Conf. Artificial Intelligence, pp. 813–818 (1989)Google Scholar
  3. 3.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  4. 4.
    Murphy, P.M., Aha, D.W.: UCI repository of Machine learning databases. University of California Irvine, Department of Information and Computer ScienceGoogle Scholar
  5. 5.
    Lewis, D., Catlett, J.: Heterogeneous Uncertainty Sampling for Supervised Learning. In: Proc. of the Eleventh International Conference of Machine Learning, pp. 148–156 (1994)Google Scholar
  6. 6.
    Fawcett, T.E., Provost, F.: Adaptive Fraud Detection. Data Mining and Knowledge Discovery 3(1), 291–316 (1997)CrossRefGoogle Scholar
  7. 7.
    Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30(2/3), 195–215 (1998)CrossRefGoogle Scholar
  8. 8.
    Ling, C.X., Li, C.: Data Mining for Direct Marketing: Problems and Solutions. In: Proc. Int’l Conf. on Knowledge Discovery & Data Mining (1998)Google Scholar
  9. 9.
    Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to Classification. In: Proc. of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 518–523 (1995)Google Scholar
  10. 10.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(10), 1263–1284 (2009)Google Scholar
  11. 11.
    Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory Under Sampling for Class Imbalance Learning. In: Proc. Int’l Conf. Data Mining, pp. 965–969 (2006)Google Scholar
  12. 12.
    Zhang, J., Mani, I.: KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proc. Int’l Conf. Machine Learning, ICML 2003, Workshop Learning from Imbalanced Data Sets (2003)Google Scholar
  13. 13.
    Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In: Proc. Int’l Conf. Machine Learning, pp. 179–186 (1997)Google Scholar
  14. 14.
    Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29 (2004)CrossRefGoogle Scholar
  15. 15.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-Sampling Technique. J. Artificial Intelligence Research 16, 321–357 (2002)zbMATHGoogle Scholar
  16. 16.
    Cieslak, D.A., Chawla, N.V.: Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data. In: Proc. IEEE Int’l Conf. Data Mining, pp. 143–152 (2008)Google Scholar
  17. 17.
    He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In: Proc. Int’l J. Conf. Neural Networks, pp. 1322–1328 (2008)Google Scholar
  18. 18.
    Chen, S., He, H., Garcia, E.A.: RAMOBoost: Ranked Minority Oversampling in Boosting. IEEE Trans. Neural Networks 21(20), 1624–1642 (2010)CrossRefGoogle Scholar
  19. 19.
    Barua, S., Islam, M. M., Murase, K.: A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 735–744. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis 6(5), 429–449 (2000)Google Scholar
  21. 21.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  22. 22.
    UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
  23. 23.
    Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL-2003-4, HP Labs (2003)Google Scholar
  24. 24.
    Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A step-by-Step Approach. Wiley, New York (2009)zbMATHCrossRefGoogle Scholar
  25. 25.
    Critical Value Table of Wilcoxon Signed-Ranks Test, http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sukarna Barua
    • 1
  • Md. Monirul Islam
    • 1
  • Kazuyuki Murase
    • 2
  1. 1.Bangladesh University of Engineering and Technology (BUET)DhakaBangladesh
  2. 2.University of FukuiFukuiJapan

Personalised recommendations