Skip to main content

Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7826))

Included in the following conference series:

Abstract

There are many entity-attribute tables on the Web that can be utilized for enriching the entities of knowledge bases (KBs). This requires the schema mapping (matching) between the Web tables and the huge KBs. Existing solutions on schema mapping are inadequate for mapping a Web table and a KB, because of many reasons such as (1) there are many duplicates of entities and their types in a KB; (2) the schema of KB is often implicit, informal, and evolving over time; (3) the KB is typically very large in volume. In this paper, we propose a pure instance-based schema mapping solution to statistically find the effective mapping between a Web table and a KB via the matched data examples. Besides, we propose efficient solutions on finding the matched data examples as well as the overall mapping of a table and a KB. Experiments over real data sets show that our solution is much more accurate than the two baselines of existing solutions. Results also show that our solution is feasible for the mapping of Web tables to large scale KBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding and design by example. In: ICDE, pp. 10–19 (2008)

    Google Scholar 

  2. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings via data examples. ACM Trans. Database Syst. 36(4), 23 (2011)

    Article  Google Scholar 

  3. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with coma++. In: SIGMOD Conference, pp. 906–908 (2005)

    Google Scholar 

  4. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer (2011)

    Google Scholar 

  5. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom, J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–276 (2009)

    Article  Google Scholar 

  6. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD Conference, pp. 1247–1250 (2008)

    Google Scholar 

  7. Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data integration for the relational web. PVLDB 2(1), 1090–1101 (2009)

    Google Scholar 

  8. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)

    Google Scholar 

  9. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching approaches. In: VLDB, pp. 610–621 (2002)

    Google Scholar 

  10. Engmann, D., Maßmann, S.: Instance matching with coma++. In: BTW Workshops, pp. 28–37 (2007)

    Google Scholar 

  11. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W.: Google fusion tables: data management, integration and collaboration in the cloud. In: SoCC, pp. 175–180 (2010)

    Google Scholar 

  12. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

    Google Scholar 

  13. Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values. In: SIGMOD Conference, pp. 205–216 (2003)

    Google Scholar 

  14. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: ICDE, pp. 57–68 (2005)

    Google Scholar 

  15. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB, pp. 49–58 (2001)

    Google Scholar 

  16. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128 (2002)

    Google Scholar 

  17. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating web data. In: VLDB, pp. 598–609 (2002)

    Google Scholar 

  18. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.: Active knowledge: dynamically enriching rdf knowledge bases by web services. In: SIGMOD Conference, pp. 399–410 (2010)

    Google Scholar 

  19. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: SIGMOD Conference, pp. 73–84 (2012)

    Google Scholar 

  20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  21. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW, pp. 697–706 (2007)

    Google Scholar 

  22. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text understanding. In: SIGMOD Conference, pp. 481–492 (2012)

    Google Scholar 

  23. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: Infogather: entity augmentation and attribute discovery by holistic matching with web tables. In: SIGMOD Conference, pp. 97–108 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Chen, Y., Chen, J., Du, X., Zou, L. (2013). Mapping Entity-Attribute Web Tables to Web-Scale Knowledge Bases. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37450-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37450-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37449-4

  • Online ISBN: 978-3-642-37450-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics