Semantic Data Warehouse Design: From ETL to Deployment à la Carte

  • Ladjel Bellatreche
  • Selma Khouri
  • Nabila Berkani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7826)


In last decades, semantic databases (\(\mathcal{S}\mathcal{D}\mathcal{B}\)) emerge and become operational databases, since the major vendors provide semantic supports in their products. This is mainly due to the spectacular development of ontologies in several domains like E-commerce, Engineering, Medicine, etc. Contrary to a traditional database, where its tuples are stored in a relational (table) layout, a \(\mathcal{S}\mathcal{D}\mathcal{B}\) stores independently ontology and its instances in one of the three main storage layouts (horizontal, vertical, binary). Based on this situation, \(\mathcal{S}\mathcal{D}\mathcal{B}\) become serious candidates for business intelligence projects built around the Data Warehouse (\(\mathcal{D}\mathcal{W}\)) technology. The important steps of the \(\mathcal{D}\mathcal{W}\) development life-cycle (user requirement analysis, conceptual design, logical design, ETL, physical design) are usually dealt in isolation way. This is mainly due to the complexity of each phase. Actually, the \(\mathcal{D}\mathcal{W}\) technology is quite mature for the traditional data sources. As a consequence, leveraging its steps to deal with semantic \(\mathcal{D}\mathcal{W}\) becomes a necessity. In this paper, we propose a methodology covering the most important steps of life-cycle of semantic \(\mathcal{D}\mathcal{W}\). Firstly, a mathematical formalization of ontologies, \(\mathcal{S}\mathcal{D}\mathcal{B}\) and semantic \(\mathcal{D}\mathcal{W}\) is given. User requirements are expressed on the ontological level by the means of the goal oriented paradigm. Secondly, the ETL process is expressed on the ontological level, independently of any implementation constraint. Thirdly, different deployment solutions according to the storage layouts are proposed and implemented using the data access object design patterns. Finally, a prototype validating our proposal using the Lehigh University Benchmark ontology is given.


Ontology Model Logical Design Data Integration System Ontological Level Local Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arens, Y., Hsu, C., Knoblock, C.: Query processing in the SIMS information mediator. In: Readings in Agents, pp. 82–90. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  3. 3.
    Bellatreche, L., et al.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Computers in Industry Journal Elsevier 57(8-9), 711–724 (2006)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration in data warehousing. Int. J. Cooperative Inf. Syst. 10(3), 237–271 (2001)CrossRefGoogle Scholar
  5. 5.
    Cares, C., Franch, X., Lopez, L., Marco, J.: Definition and uses of the i* metamodel. In: Proceedings of the 4th International i* Workshop, pp. 20–25 (June 2010)Google Scholar
  6. 6.
    Cruz, I.F., Xiao, H.: The role of ontologies in data integration. Jounal of Engineering Intelligent Systems 13(4), 245–252 (2005)Google Scholar
  7. 7.
    Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An ontology-based database for data intensive applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: ICDT, pp. 207–224 (2003)Google Scholar
  9. 9.
    Gali, A., Chen, C.X., Claypool, K.T., Uceda-Sosa, R.: From ontology to relational databases. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 278–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse design. In: DOLAP 2005, pp. 47–56 (2005)Google Scholar
  11. 11.
    Golfarelli, M.: Data warehouse life-cycle and design. In: Encyclopedia of Database Systems, pp. 658–664. Springer US (2009)Google Scholar
  12. 12.
    Gruber, T.: A translation approach to portable ontology specifications. In Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  13. 13.
    Khouri, S., Bellatreche, L.: A methodology and tool for conceptual designing a data warehouse from ontology-based sources. In: DOLAP 2010, pp. 19–24 (2010)Google Scholar
  14. 14.
    Khouri, S., Boukhari, I., Bellatreche, L., Jean, S., Sardet, E., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. To appear in Computers in Industry Journal (2012)Google Scholar
  15. 15.
    Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley (1996)Google Scholar
  16. 16.
    Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user interface paradigm in smalltalk-80. In: JOOP, pp. 18–22 (August/September 1988)Google Scholar
  17. 17.
    Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: IEEE International Symposium on Requirements Engineering, p. 249 (2001)Google Scholar
  18. 18.
    Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  19. 19.
    List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting the data warehouse design process a use case driven approach. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593–603. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: A practical system for ontology storage, reasoning and search. In: VLDB, pp. 1402–1405 (2007)Google Scholar
  21. 21.
    Matid, D., Butorac, D., Kegalj, H.: Data access architecture in object oriented applications using design patterns. In: IEEE MELECON, May 12-15, pp. 18–22 (2004)Google Scholar
  22. 22.
    Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decision Support Systems 52(4), 853–868 (2012)CrossRefGoogle Scholar
  23. 23.
    Pires, P.F., Delicato, F.C., Cóbe, R., Batista, T.V., Davis, J.G., Song, J.H.: Integrating ontologies, model driven, and cnl in a multi-viewed approach for requirements engineering. Requirements Engineering 16(2), 133–160 (2011)CrossRefGoogle Scholar
  24. 24.
    Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)CrossRefGoogle Scholar
  25. 25.
    Romero, O., Simitsis, A., Abelló, A.: GEM: Requirement-driven generation of ETL and multidimensional conceptual designs. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 80–95. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Brockmans, S., Haase, P., Serafini, L., Stuckenschmidt, H.: Formal and conceptual comparison of ontology mapping languages. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 267–291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Skoutas, D., Simitsis, A.: Ontology-based conceptual design of etl processes for both structured and semi-structured data. Int. J. Semantic Web Inf. Syst. 3(4), 1–24 (2007)CrossRefGoogle Scholar
  28. 28.
    Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its use. Informatica 29, 401–408 (2005)Google Scholar
  29. 29.
    Wache, H., Scholz, T., Stieghahn, H., König-Ries, B.: An integration method for the specification of rule-oriented mediators. In: DANTE, pp. 109–112 (1999)Google Scholar
  30. 30.
    Winter, R., Strauch, B.: A method for demand driven information requirements analysis in data warehousing projects. In: 36th HICSS, p. 231 (2003)Google Scholar
  31. 31.
    Wu, Z., Eadon, G., Das, S., Chong, E., Kolovski, V., Annamalai, M., Srinivasan, J.: Implementing an inference engine for rdfs/owl constructs and user-defined rules in oracle. In: ICDE, pp. 1239–1248 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ladjel Bellatreche
    • 1
  • Selma Khouri
    • 1
    • 2
  • Nabila Berkani
    • 2
  1. 1.LIAS/ISAE-ENSMAFrance
  2. 2.National High School for Computer Science (ESI)Algeria

Personalised recommendations