Skip to main content

Two-Image Perspective Photometric Stereo Using Shape-from-Shading

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7727))

Included in the following conference series:

Abstract

Shape-from-Shading and photometric stereo are two fundamental problems in Computer Vision aimed at reconstructing surface depth given either a single image taken under a known light source or multiple images taken under different illuminations, respectively. Whereas the former utilizes partial differential equation (PDE) techniques to solve the image irradiance equation, the latter can be expressed as a linear system of equations in surface derivatives when 3 or more images are given. It therefore seems that current photometric stereo techniques do not extract all possible depth information from each image by itself. This paper utilizes PDE techniques for the solution of the combined Shape-from-Shading and photometric stereo problem when only 2 images are available. Extending our previous results on this problem, we consider the more realistic perspective projection of surfaces during the photographic process. Under these assumptions, there is a unique weak (Lipschitz continuous) solution to the problem at hand, solving the well known convex/concave ambiguity of the Shape-from-Shading problem. We propose two approximation schemes for the numerical solution of this problem, an up-wind finite difference scheme and a Semi-Lagrangian scheme, and analyze their properties. We show that both schemes converge linearly and accurately reconstruct the original surfaces. In comparison with a similar method for the orthographic 2-image photometric stereo, the proposed perspective one outperforms the orthographic one. We also demonstrate the method on real-life images. Our results thus show that using methodologies common in the field of Shape-from-Shading it is possible to recover more depth information for the photometric stereo problem under the more realistic perspective projection assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, B.K.P.: Image intensity understanding. Artificial Intelligence 8, 201–231 (1977)

    Article  MATH  Google Scholar 

  2. Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from a single view. In: Proc. SPIE Annual Technical Symposium on Image Understanding Systems and Industrial Applications, San Diego, CA, pp. 136–143 (1978)

    Google Scholar 

  3. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 139–144 (1980)

    Article  Google Scholar 

  4. Tankus, A., Sochen, N., Yeshurun, Y.: Shape-from-Shading under perspective projection. International Journal of Computer Vision 63, 21–43 (2005)

    Article  Google Scholar 

  5. Tankus, A., Sochen, N., Yeshurun, Y.: A new perspective [on] Shape-from-Shading. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, vol. II, pp. 862–869 (2003)

    Google Scholar 

  6. Tankus, A., Sochen, N., Yeshurun, Y.: Perspective Shape-from-Shading by Fast Marching. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, vol. I, pp. 43–49 (2004)

    Google Scholar 

  7. Tankus, A., Sochen, N., Yeshurun, Y.: Reconstruction of medical images by perspective Shape-from-Shading. In: Proceedings of the International Conference on Pattern Recognition, Cambridge, UK, vol. 3, pp. 778–781 (2004)

    Google Scholar 

  8. Prados, E., Faugeras, O.D.: “Perspective shape from shading” and viscosity solutions. In: ICCV, pp. 826–831. IEEE Computer Society (2003)

    Google Scholar 

  9. Prados, E., Soatto, S.: Fast Marching Method for Generic Shape from Shading. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 320–331. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Courteille, F., Crouzil, A., Durou, J.D., Gurdjos, P.: Towards shape from shading under realistic photographic conditions. In: ICPR (2), pp. 277–280 (2004)

    Google Scholar 

  11. Argyriou, V., Petrou, M., Hawkes, P.W.: Chapter 1 photometric stereo: An overview. In: Advances in Imaging and Electron Physics, vol. 156, pp. 1–54. Elsevier (2009)

    Google Scholar 

  12. Okatani, T., Deguchi, K.: On uniqueness of solutions of the three-light-source photometric stereo: Conditions on illumination configuration and surface reflectance. CVIU 81, 211–226 (2001)

    MATH  Google Scholar 

  13. Shashua, A.: On photometric issues in 3D visual recognition from a single 2D image. International Journal of Computer Vision 21, 99–122 (1997)

    Article  Google Scholar 

  14. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. International Journal of Computer Vision 72, 239–257 (2007)

    Article  Google Scholar 

  15. Onn, R., Bruckstein, A.M.: Integrability Disambiguates Surface Recovery in Two-Image Photometric Stereo. International Journal of Computer Vision 5, 105–113 (1990)

    Article  Google Scholar 

  16. Mecca, R., Falcone, M.: Uniqueness and approximation of a photometric shape-from-shading model. SIAM Journal on Imaging Sciences (2012) (submitted)

    Google Scholar 

  17. Mecca, R.: Uniqueness for shape from shading via photometric stereo technique. In: Macq, B., Schelkens, P. (eds.) IEEE ICIP, pp. 2933–2936 (2011)

    Google Scholar 

  18. Kozera, R.: Existence and uniqueness in photometric stereo. Applied Mathematics and Computation 44, 103 (1991)

    Article  MathSciNet  Google Scholar 

  19. Tankus, A., Kiryati, N.: Photometric stereo under perspective projection. In: Proceedings of the Tenth International Conference on Computer Vision, Beijing, China (2005)

    Google Scholar 

  20. Yoon, K.J., Prados, E., Sturm, P.: Generic Scene Recovery using Multiple Images. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 745–757. Springer, Heidelberg (2009)

    Google Scholar 

  21. Tankus, A., Sochen, N.A., Yeshurun, Y.: Shape-from-shading under perspective projection. International Journal of Computer Vision 63(1), 21–43 (2005)

    Article  Google Scholar 

  22. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer (1994)

    Google Scholar 

  23. Strickwerda, J.: Finite Difference Schemes and PDE. Wadsworth Brooks/Cole (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mecca, R., Tankus, A., Bruckstein, A.M. (2013). Two-Image Perspective Photometric Stereo Using Shape-from-Shading. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37447-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37447-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37446-3

  • Online ISBN: 978-3-642-37447-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics