Toward Efficient Acquisition of BRDFs with Fewer Samples

  • Muhammad Asad Ali
  • Imari Sato
  • Takahiro Okabe
  • Yoichi Sato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7727)


In this paper we propose a novel method for measuring reflectance of isotropic materials efficiently by carefully choosing a set of sampling directions which yields less modeling error. The analysis is based on the empirical observation that most isotropic BRDFs can be approximated using 2D bivariate representation. Further a compact representation in the form of basis is computed for a large database of densely measured materials. Using these basis and an iterative optimization process, an appropriate set of sampling directions necessary for acquiring reflectance of new materials are selected. Finally, the measured data using selected sampling directions is projected onto the compact basis to obtain weighting factors for linearly representing new material as a combination of basis of several previously measured materials. This compact representation with an appropriate BRDF parameterization allows us to significantly reduce the time and effort required for making new reflectance measurements of any isotropic material. Experimental results obtained using few sampling directions on the MERL dataset show comparative performance to an exhaustively captured set of BRDFs.


Condition Number Sampling Direction Diagonal Term Compact Basis Eurographics Workshop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometric considerations and nomenclature for reflectance. National Bureau of Standards, Monographs. U.S. Department of Commerce (1977)Google Scholar
  2. 2.
    Koenderink, J.J., Doorn, A.J.V.: Phenomenological description of bidirectional surface reflection. Journal of Optical Society of America 15, 2903–2912 (1998)CrossRefGoogle Scholar
  3. 3.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: Efficient Isotropic BRDF Measurement. In: Eurographics Workshop on Rendering (EGRW), pp. 241–247 (2003)Google Scholar
  4. 4.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A Data Driven Reflectance Model. ACM Transactions on Graphics 22, 759–769 (2003)CrossRefGoogle Scholar
  5. 5.
    Romeiro, F., Vasilyev, Y., Zickler, T.: Passive Reflectometry. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 859–872. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Computer Graphics 26, 265–272 (1992)CrossRefGoogle Scholar
  7. 7.
    Dana, K.J., Ginneken, B.V., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1–34 (1999)CrossRefGoogle Scholar
  8. 8.
    Dana, K.J.: BRDF/BTF measurement device. In: IEEE International Conference on Computer Vision (ICCV), pp. 460–466 (2001)Google Scholar
  9. 9.
    Rusinkiewicz, S.: A New Change of Variables for Efficient BRDF Representation. In: Eurographics Workshop on Rendering (EGRW), pp. 11–22 (1998)Google Scholar
  10. 10.
    Marschner, S.R., Westin, S.H., Lafortune, E.P.F., Torrance, K.E.: Image-Based Bidirectional Reflectance Distribution Function Measurement. Applied Optics 39, 2592–2600 (2000)CrossRefGoogle Scholar
  11. 11.
    Mukaigawa, Y., Sumino, K., Yagi, Y.: Multiplexed Illumination for Measuring BRDF Using an Ellipsoidal Mirror and a Projector. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 246–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Mukaigawa, Y., Sumino, K., Yagi, Y.: Rapid BRDF measurement using an Ellipsoidal Mirror and a Projector. IPSJ Transactions on Computer Vision and Applications 1, 21–32 (2009)CrossRefGoogle Scholar
  13. 13.
    Ghosh, A., Achutha, S., Heidrich, W., Toole, M.: BRDF acquisition with basis illumination. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  14. 14.
    Lawrence, J., Artzi, A.B., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., Rusinkiewicz, S.: Inverse Shade Trees for non-parametric material representation and editing. ACM SIGGRAPH, 735–745 (2006)Google Scholar
  15. 15.
    Sato, I., Okabe, T., Sato, Y.: Appearance sampling of real objects for variable illumination. International Journal of Computer Vision 75, 29–48 (2007)CrossRefGoogle Scholar
  16. 16.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Transactions on Graphics 21, 267–276 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muhammad Asad Ali
    • 1
  • Imari Sato
    • 2
  • Takahiro Okabe
    • 1
  • Yoichi Sato
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoJapan
  2. 2.National Institute of InformaticsJapan

Personalised recommendations