Advertisement

Large-Scale Bundle Adjustment by Parameter Vector Partition

  • Shanmin Pang
  • Jianrue Xue
  • Le Wang
  • Nanning Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7727)

Abstract

We propose an efficient parallel bundle adjustment (BA) algorithm to refine 3D reconstruction of the large-scale structure from motion (SfM) problem, which uses image collections from Internet. Different from the latest BA techniques that improve efficiency by optimizing the reprojection error function with Conjugate Gradient (CG) methods, we employ the parameter vector partition strategy. More specifically, we partition the whole BA parameter vector into a set of individual sub-vectors via normalized cut (Ncut). Correspondingly, the solution of the BA problem can be obtained by minimizing subproblems on these sub-vector spaces. Our approach is approximately parallel, and there is no need to solve the large-scale linear equation of the BA problem. Experiments carried out on a low-end computer with 4GB RAM demonstrate the efficiency and accuracy of the proposed algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80, 189–210 (2008)CrossRefGoogle Scholar
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day. In: IEEE 12th International Conference on Computer Vision, pp. 72–79 (2009)Google Scholar
  3. 3.
    Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  4. 4.
    Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-motion pipeline on a hierarchical cluster tree. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1489–1496 (2009)Google Scholar
  5. 5.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3001–3008 (2011)Google Scholar
  6. 6.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment–a modern synthesis. In: Vision Algorithms: Theory and practice, pp. 153–177 (2000)Google Scholar
  7. 7.
    Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.: Pushing the envelope of modern methods for bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1474–1481 (2010)Google Scholar
  8. 8.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing 27, 1178–1193 (2009)CrossRefGoogle Scholar
  9. 9.
    Lourakis, M., Argyros, A.: Is levenberg-marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: IEEE 10th International Conference on Computer Vision, pp. 1526–1531 (2005)Google Scholar
  10. 10.
    Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3d reconstruction. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  11. 11.
    Jian, Y., Balcan, D., Dellaert, F.: Generalized subgraph preconditioners for large-scale bundle adjustment. In: IEEE 13th International Conference on Computer Vision, pp. 1–8 (2011)Google Scholar
  12. 12.
    Shum, H., Ke, Q., Zhang, Z.: Efficient bundle adjustment with virtual key frames: A hierarchical approach to multi-frame structure from motion. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II:538–II:543 (1999)Google Scholar
  13. 13.
    Steedly, D., Essa, I.: Propagation of innovative information in non-linear least-squares structure from motion. In: IEEE 8th International Conference on Computer Vision, pp. 223–229 (2001)Google Scholar
  14. 14.
    Steedly, D., Essa, I., Dellaert, F.: Spectral partitioning for structure from motion. In: IEEE 9th International Conference on Computer Vision, pp. 996–103 (2003)Google Scholar
  15. 15.
    Agarwal, S., Snavely, N., Seitz, S., Szeliski, R.: Bundle adjustment in the large. In: European Conference on Computer Vision, pp. 29–42 (2010)Google Scholar
  16. 16.
    Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Wu, C., Agarwal, S., Curless, B., Seitz, S.: Multicore bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3057–3064 (2011)Google Scholar
  18. 18.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  19. 19.
    Lourakis, M., Argyros, A.: Sba: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS) 36, 1–30 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nocedal, J., Wright, S.: Numerical optimization. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shanmin Pang
    • 1
  • Jianrue Xue
    • 1
  • Le Wang
    • 1
  • Nanning Zheng
    • 1
  1. 1.Institute of Artificial Intelligence and RoboticsXi’an Jiaotong UniversityChina

Personalised recommendations