Skip to main content

Voronoi-Based Extraction of a Feature Skeleton from Noisy Triangulated Surfaces

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

  • 3931 Accesses

Abstract

Recent advances in 3D reconstruction allow to quickly acquire highly detailed and complex geometry. However, the outcome of such systems is usually unstructured, noisy and redundant. In order to enable further processing such as CAD modeling, physical measurement or rendering, semantic information about shape and topology needs to be derived from the data. In this paper, a robust approach to the extraction of a feature skeleton is presented. The skeleton reflects the overall structure of an object. It is given by a set of lines that run along ridges or valleys and meet at umbilical points. The computed data is not just useful for building semantic-driven CAD models in reverse engineering disciplines but also to identify geometrical features for tasks like object recognition, registration, rendering or re-meshing. Based on the mean curvature, a Markov random field is used to robustly classify each vertex either belonging to convex, concave or flat regions. The boundaries of the regions are described by a set of points that are robustly estimated using linear interpolation. A novel algorithm is used to extract the feature skeleton based on the Voronoi decomposition of the boundary points. The method has been successfully tested on real world examples and the paper concludes with a detailed evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wekel, T., Hellwich, O.: Selection of an Optimal Polyhedral Surface Model Using the Minimum Description Length Principle. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 553–562. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Hildebrandt, K., Polthier, K., Wardetzky, M.: Smooth feature lines on surface meshes. In: Proceedings of the third Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  3. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP 2003, pp. 177–187. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  4. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Stability of curvature measures. In: Proceedings of the Symposium on Geometry Processing, SGP 2009, pp. 1485–1496. Eurographics Association, Aire-la-Ville (2009)

    Google Scholar 

  5. Agam, G., Tang, X.: A sampling framework for accurate curvature estimation in discrete surfaces. IEEE Transactions on Visualization and Computer Graphics 11, 573–583 (2005)

    Article  Google Scholar 

  6. Weinkauf, T., Günther, D.: Separatrix persistence: Extraction of salient edges on surfaces using topological methods. CG Forum 28, 1519–1528 (2009)

    Google Scholar 

  7. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. 23, 609–612 (2004)

    Article  Google Scholar 

  8. Yoshizawa, S., Belyaev, A., Seidel, H.P.: Fast and robust detection of crest lines on meshes. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, SPM 2005, pp. 227–232. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Kim, H.S., Choi, H.K., Lee, K.H.: Feature detection of triangular meshes based on tensor voting theory. Comput. Aided Des. 41, 47–58 (2009)

    Article  Google Scholar 

  10. Cazals, F., Pouget, M.: Topology driven algorithms for ridge extraction on meshes (2005)

    Google Scholar 

  11. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40, 12:1–12:87 (2008)

    Article  Google Scholar 

  12. Pauly, M., Keiser, R., Gross, M.H.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22, 281–290 (2003)

    Article  Google Scholar 

  13. Lavoué, G., Wolf, C.: Markov Random Fields for Improving 3D Mesh Analysis and Segmentation. In: Eurographics 2008 Workshop on 3D Object Retrieval (2008)

    Google Scholar 

  14. Benhabiles, H., Lavou, G., Vandeborre, J.P., Daoudi, M.: Learning boundary edges for 3d-mesh segmentation. Computer Graphics Forum 30, 2170–2182 (2011)

    Article  Google Scholar 

  15. Rössl, C., Kobbelt, L., Seidel, H.P.: Extraction of feature lines on triangulated surfaces using morphological operators. In: Proceedings of the AAAI Symposium on Smart Graphics, pp. 71–75 (2000)

    Google Scholar 

  16. Wiegerinck, W., Heskes, T.: Fractional belief propagation. In: NIPS, pp. 438–445. MIT Press (2003)

    Google Scholar 

  17. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 553–560 (2005)

    Article  Google Scholar 

  19. Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20, 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 362–371 (2002)

    Article  Google Scholar 

  21. Saboret, L., Alliez, P., Lvy, B.: Planar parameterization of triangulated surface meshes. In: CGAL User and Reference Manual. 4.0 edn. CGAL Editorial Board (2012), http://www.cgal.org/

  22. Hert, S., Seel, M.: dD convex hulls and Delaunay triangulations. In: CGAL User and Reference Manual, 4th edn. CGAL Editorial Board (2012), http://www.cgal.org/

  23. Computational Geometry Algorithms Library, http://www.cgal.org/

  24. AIM@SHAPE, http://shapes.aim-at-shape.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wekel, T., Hellwich, O. (2013). Voronoi-Based Extraction of a Feature Skeleton from Noisy Triangulated Surfaces. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics