Skip to main content

Video Co-segmentation

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

Segmentation of a single image is in general a highly underconstrained problem. A frequent approach to solve it is to somehow provide prior knowledge or constraints on how the objects of interest look like (in terms of their shape, size, color, location or structure). Image co-segmentation trades the need for such knowledge for something much easier to obtain, namely, additional images showing the object from other viewpoints. Now the segmentation problem is posed as one of differentiating the similar object regions in all the images from the more varying background. In this paper, for the first time, we extend this approach to video segmentation: given two or more video sequences showing the same object (or objects belonging to the same class) moving in a similar manner, we aim to outline its region in all the frames. In addition, the method works in an unsupervised manner, by learning to segment at testing time. We compare favorably with two state-of-the-art methods on video segmentation and report results on benchmark videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Spatiotemporal Closure. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 369–382. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal Contour Closure by Superpixel Grouping. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 480–493. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Sundaram, N., Keutzer, K.: Long term video segmentation through pixel level spectral clustering on gpus. In: ICCV Workshops (2011)

    Google Scholar 

  4. Maire, M., Arbelaez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: CVPR (2008)

    Google Scholar 

  5. Li, Y., Sun, J., Shum, H.Y.: Video object cut and paste. ACM Trans. Graph. (2005)

    Google Scholar 

  6. Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. In: BMVC (2010)

    Google Scholar 

  7. Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: CVPR (1) (2006)

    Google Scholar 

  8. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)

    Google Scholar 

  9. Huang, Y., Liu, Q., Metaxas, D.N.: Video object segmentation by hypergraph cut. In: CVPR (2009)

    Google Scholar 

  10. Grundmann, M., Kwatra, V., Han, M., Essa, I.A.: Efficient hierarchical graph-based video segmentation. In: CVPR (2010)

    Google Scholar 

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision (2004)

    Google Scholar 

  12. Rubio, J.C., Serrat, J., López, A.M.: Unsupervised co-segmentation through region matching. In: CVPR (2012)

    Google Scholar 

  13. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR (2010)

    Google Scholar 

  14. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. (1998)

    Google Scholar 

  15. Kläer, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008 (2008)

    Google Scholar 

  16. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR (2010)

    Google Scholar 

  17. Tiburzi, F., Escudero, M., Bescós, J., Sanchez, J.M.M.: A ground truth for motion-based video-object segmentation. In: ICIP (2008), http://www-vpu.ii.uam.es/CVSG/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rubio, J.C., Serrat, J., López, A. (2013). Video Co-segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics