An Anchor Patch Based Optimization Framework for Reducing Optical Flow Drift in Long Image Sequences

  • Wenbin Li
  • Darren Cosker
  • Matthew Brown
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)


Tracking through long image sequences is a fundamental research issue in computer vision. This task relies on estimating correspondences between image pairs over time where error accumulation in tracking can result in drift. In this paper, we propose an optimization framework that utilises a novel Anchor Patch algorithm which significantly reduces overall tracking errors given long sequences containing highly deformable objects. The framework may be applied to any tracking algorithm that calculates dense correspondences between images, e.g. optical flow. We demonstrate the success of our approach by showing significant tracking error reduction using 6 existing optical flow algorithms applied to a range of benchmark ground truth sequences. We also provide quantitative analysis of our approach given synthetic occlusions and image noise.


Root Mean Square Optimization Framework Error Score Sift Feature Endpoint Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeCarlo, D., Metaxas, D.: The integration of optical flow and deformable models with applications to human face shape and motion estimation. In: Computer Vision and Pattern Recognition (CVPR), pp. 231–238. IEEE (1996)Google Scholar
  2. 2.
    Borshukov, G., Piponi, D., Larsen, O., Lewis, J., Tempelaar-Lietz, C.: Universal capture: image-based facial animation for the matrix reloaded. In: ACM SIGGRAPH 2005 Courses, p. 16. ACM (2005)Google Scholar
  3. 3.
    Ezzat, T., Geiger, G., Poggio, T.: Trainable videorealistic speech animation. ACM Transactions on Graphics (TOG) 21, 388–398 (2002)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 500–513 (2011)CrossRefGoogle Scholar
  6. 6.
    Bradley, D., Heidrich, W., Popa, T., Sheffer, A.: High resolution passive facial performance capture. ACM Transactions on Graphics (TOG) 29, 41 (2010)CrossRefGoogle Scholar
  7. 7.
    Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R.W., Gross, M.: High-quality passive facial performance capture using anchor frames. ACM Transactions on Graphics (TOG) 30, 75 (2011)CrossRefGoogle Scholar
  8. 8.
    Garg, R., Roussos, A., Agapito, L.: Robust trajectory-space tv-l1 optical flow for non-rigid sequences. Energy Minimazation Methods in Computer Vision and Pattern Recognition, 300–314 (2011)Google Scholar
  9. 9.
    Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439 (2010)Google Scholar
  10. 10.
    Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for tv-l1 optical flow. Statistical and Geometrical Approaches to Visual Motion Analysis, 23–45 (2009)Google Scholar
  11. 11.
    Pizarro, D., Bartoli, A.: Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision, 1–17 (2012)Google Scholar
  12. 12.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable libraryof computer vision algorithms (2008)Google Scholar
  13. 13.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92, 1–31 (2011)CrossRefGoogle Scholar
  14. 14.
    Drulea, M., Nedevschi, S.: Total variation regularization of local-global optical flow. In: Intelligent Transportation Systems (ITSC), pp. 318–323. IEEE (2011)Google Scholar
  15. 15.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  16. 16.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)CrossRefGoogle Scholar
  17. 17.
    White, R., Crane, K., Forsyth, D.A.: Capturing and animating occluded cloth. ACM Transactions on Graphics (TOG) 26, 34 (2007)CrossRefGoogle Scholar
  18. 18.
    Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-d tracking. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenbin Li
    • 1
  • Darren Cosker
    • 1
  • Matthew Brown
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations