Skip to main content

Online Multi-target Tracking by Large Margin Structured Learning

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

We present an online data association algorithm for multi-object tracking using structured prediction. This problem is formulated as a bipartite matching and solved by a generalized classification, specifically, Structural Support Vector Machines (S-SVM). Our structural classifier is trained based on matching results given the similarities between all pairs of objects identified in two consecutive frames, where the similarity can be defined by various features such as appearance, location, motion, etc. With an appropriate joint feature map and loss function in the S-SVM, finding the most violated constraint in training and predicting structured labels in testing are modeled by the simple and efficient Kuhn-Munkres (Hungarian) algorithm in a bipartite graph. The proposed structural classifier can be generalized effectively for many sequences without re-training. Our algorithm also provides a method to handle entering/leaving objects, short-term occlusions, and misdetections by introducing virtual agents—additional nodes in a bipartite graph. We tested our algorithm on multiple datasets and obtained comparable results to the state-of-the-art methods with great efficiency and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leibe, B., Schindler, K., Van Gool, L.: Coupled detection and trajectory estimation for multi-object tracking. In: ICCV (2007)

    Google Scholar 

  2. Jiang, S.H., Fels, Little, J.J.: A linear programming approach for multiple object tracking. In: CVPR (2007)

    Google Scholar 

  3. Andriyenko, A., Schindler, K.: Globally Optimal Multi-target Tracking on a Hexagonal Lattice. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 466–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Zhang, R.L., Li, Y., Nevatia: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

  5. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  6. Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Li, R.Y., Huang, C., Nevatia, R.: Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: CVPR (2009)

    Google Scholar 

  8. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: CVPR (2010)

    Google Scholar 

  9. Kuo, C.H., Nevatia, R.: How does person identity recognition help multi-person tracking? In: CVPR (2011)

    Google Scholar 

  10. Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-target tracking using a CRF model. In: CVPR (2011)

    Google Scholar 

  11. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: CVPR (2011)

    Google Scholar 

  12. Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: CVPR (2012)

    Google Scholar 

  13. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: CVPR (2011)

    Google Scholar 

  14. Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: CVPR (2012)

    Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  16. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. IJCV 77, 259–289 (2008)

    Article  Google Scholar 

  17. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE PAMI 32, 1627–1645 (2010)

    Article  Google Scholar 

  18. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV 75, 247–266 (2007)

    Article  Google Scholar 

  19. Yang, M., Lv, F., Xu, W., Gong, Y.: Detection driven adaptive multi-cue integration for multiple human tracking. In: ICCV (2009)

    Google Scholar 

  20. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)

    Google Scholar 

  21. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  22. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: ICCV (2009)

    Google Scholar 

  23. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  24. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR (2008)

    Google Scholar 

  25. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking by detection. In: CVPR (2010)

    Google Scholar 

  26. PETS: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2009), http://www.cvg.rdg.ac.uk/PETS2009/

  27. Vedaldi, A.: A MATLAB wrapper of SVMstruct (2011), http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, S., Kwak, S., Feyereisl, J., Han, B. (2013). Online Multi-target Tracking by Large Margin Structured Learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics