Skip to main content

Robust Visual Tracking Using Dynamic Classifier Selection with Sparse Representation of Label Noise

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

Recently a category of tracking methods based on “tracking-by-detection” is widely used in visual tracking problem. Most of these methods update the classifier online using the samples generated by the tracker to handle the appearance changes. However, the self-updating scheme makes these methods suffer from drifting problem because of the incorrect labels of weak classifiers in training samples. In this paper, we split the class labels into true labels and noise labels and model them by sparse representation. A novel dynamic classifier selection method, robust to noisy training data, is proposed. Moreover, we apply the proposed classifier selection algorithm to visual tracking by integrating a part based online boosting framework. We have evaluated our proposed method on 12 challenging sequences involving severe occlusions, significant illumination changes and large pose variations. Both the qualitative and quantitative evaluations demonstrate that our approach tracks objects accurately and robustly and outperforms state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, vol. (1), pp. 798–805 (2006)

    Google Scholar 

  2. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29, 261–271 (2007)

    Article  Google Scholar 

  3. Bai, T., Li, Y.F.: Robust visual tracking with structured sparse representation appearance model. Pattern Recognition 45, 2390–2404 (2012)

    Article  MATH  Google Scholar 

  4. Babenko, B., Yang, M.H., Belongie, S.J.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)

    Google Scholar 

  5. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust ℓ1 tracker using accelerated proximal gradient approach. In: CVPR (2012)

    Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–575 (2003)

    Article  Google Scholar 

  7. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88, 303–338 (2010)

    Article  Google Scholar 

  8. Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, vol. (1), pp. 260–267 (2006)

    Google Scholar 

  9. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for visual object tracking. In: ICCV, pp. 619–626 (2011)

    Google Scholar 

  11. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)

    Google Scholar 

  12. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)

    Google Scholar 

  13. Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: Bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)

    Google Scholar 

  14. Ko, A.H.R., Sabourin, R., de Souza Britto Jr., A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition 41, 1718–1731 (2008)

    Article  MATH  Google Scholar 

  15. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)

    Google Scholar 

  16. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV, pp. 1195–1202 (2011)

    Google Scholar 

  17. Li, G., Qin, L., Huang, Q., Pang, J., Jiang, S.: Treat samples differently: Object tracking with semi-supervised online covboost. In: ICCV, pp. 627–634 (2011)

    Google Scholar 

  18. Li, X., Shen, C., Shi, Q., Dick, A., van den Hengel, A.: Non-sparse linear representations for visual tracking with online reservoir metric learning. In: CVPR (2012)

    Google Scholar 

  19. Liu, B., Huang, J., Yang, L., Kulikowski, C.A.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)

    Google Scholar 

  20. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Mei, X., Ling, H.: Robust visual tracking using ℓ1 minimization. In: ICCV, pp. 1436–1443 (2009)

    Google Scholar 

  22. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77, 125–141 (2008)

    Article  Google Scholar 

  23. Stalder, S., Grabner, H., van Gool, L.: Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In: ICCV Workshops, pp. 1409–1416 (2009)

    Google Scholar 

  24. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. (1), pp. 511–518 (2001)

    Google Scholar 

  25. Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: NIPS (2005)

    Google Scholar 

  26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  27. Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred target tracking by blur-driven tracker. In: ICCV, pp. 1100–1107 (2011)

    Google Scholar 

  28. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Wang, Q. (2013). Robust Visual Tracking Using Dynamic Classifier Selection with Sparse Representation of Label Noise. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics