Navigation toward Non-static Target Object Using Footprint Detection Based Tracking

  • Meng Yi
  • Yinfei Yang
  • Wenjing Qi
  • Yu Zhou
  • Yunfeng Li
  • Zygmunt Pizlo
  • Longin Jan Latecki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)


The destination of a traditional robot navigation task is usually a static location. However, many real life applications require a robot to continuously identify and find its way toward a non-static target, e.g., following a walking person. In this paper, we present a navigation framework for this task which is based on simultaneous navigation and tracking. It consists of iterations of data acquiring, perception/cognition and motion executing. In the perception/cognition step, visual tracking is introduced to keep track of the target object. This setting is much more challenging than regular tracking tasks, because the target object shows much larger variance in location, shape and size in consecutive images acquired while navigating. A Footprint Detection based Tracker (FD-Tracker) is proposed to robustly track the target object in such scenarios. We first perform object footprint detection in the plan-view map to grasp possible target locations. The information is then fused into a Bayesian tracking framework to prune target candidates. As compared to previous methods, our results demonstrate that using footprint can boost the performance of visual tracker. Promising experimental results of navigating a robot to various goals in an office environment further proofs the robustness of our navigation framework.


Target Object Ground Plane Near Neighbor Visual Tracking Candidate Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: Robust navigation in an indoor office environmentm. In: ICRA (2010)Google Scholar
  2. 2.
    Moore, D.C., Huang, A.S., Walter, M., Olson, E., Fletcher, L., Leonard, J., Teller, S.: Simultaneous local and global state estimation for robotic navigation. In: ICRA (2009)Google Scholar
  3. 3.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: moving obstacle detection in highly dynamic scenes. In: ICRA (2009)Google Scholar
  4. 4.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR (2008)Google Scholar
  5. 5.
    Comaniciu, D., Member, V.R., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 564–575 (2003)CrossRefGoogle Scholar
  6. 6.
    Wu, Y., Fan, J.: Contextual flow. In: CVPR (2009)Google Scholar
  7. 7.
    Ross, D., Kim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77, 125–141 (2008)CrossRefGoogle Scholar
  8. 8.
    Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2259–2272 (2011)CrossRefGoogle Scholar
  9. 9.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragment-based tracking using the integral histogram. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 798–805 (2006)Google Scholar
  10. 10.
    Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1064–1072 (2004)CrossRefGoogle Scholar
  11. 11.
    Avidan, S.: Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 261–271 (2007)CrossRefGoogle Scholar
  12. 12.
    Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1619–1632 (2011)CrossRefGoogle Scholar
  13. 13.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, pp. 47–56 (2006)Google Scholar
  14. 14.
    Kim, K., Davis, L.S.: Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 98–109. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Zhao, T., Nevatia, R., Wu, B.: Segmentation and tracking of multiple humans in crowded environments. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1198–1211 (2008)CrossRefGoogle Scholar
  16. 16.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  17. 17.
    Burschkal, D., Lee, S., Hager, G.: Stereo-based obstacle avoidance in indoor environments with active sensor re-calibration. In: ICRA (2002)Google Scholar
  18. 18.
    Gu, S., Zheng, Y., Tomasi, C.: Efficient Visual Object Tracking with Online Nearest Neighbor Classifier. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 271–282. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT Flow: Dense Correspondence across Different Scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Meng Yi
    • 1
  • Yinfei Yang
    • 2
  • Wenjing Qi
    • 1
  • Yu Zhou
    • 3
  • Yunfeng Li
    • 4
  • Zygmunt Pizlo
    • 4
  • Longin Jan Latecki
    • 1
  1. 1.Dept. of Computer and Information ScienceTemple UniversityPhiladelphiaUSA
  2. 2.GRASP LaboratoryUniversity of PennsylvaniaUSA
  3. 3.Dept. of Electronics and Information EngineeringHuazhong University of Science and TechnologyChina
  4. 4.Dept. of Psychological SciencesPurdue UniversityUSA

Personalised recommendations