MRF-Based Blind Image Deconvolution

  • Nikos Komodakis
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)


This paper proposes an optimization-based blind image deconvolution method. The proposed method relies on imposing a discrete MRF prior on the deconvolved image. The use of such a prior leads to a very efficient and powerful deconvolution algorithm that carefully combines advanced optimization techniques. We demonstrate the extreme effectiveness of our method by applying it on a wide variety of very challenging cases that involve the inference of large and complicated blur kernels.


Markov Random Field Blind Deconvolution Deconvolution Algorithm Blur Kernel Image Deconvolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Processing Magazine (1996)Google Scholar
  2. 2.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: SIGGRAPH (2006)Google Scholar
  3. 3.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: SIGGRAPH (2008)Google Scholar
  4. 4.
    Joshi, N., Zitnick, C.L., Szeliski, R., Kriegman, D.J.: Image deblurring and denoising using color priors. In: CVPR (2009)Google Scholar
  5. 5.
    Cho, S., Lee, S.: Fast motion deblurring. In: SIGGRAPH ASIA (2009)Google Scholar
  6. 6.
    Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational bayesian blind deconvolution using a total variation prior. IEEE Trans. on Image Processing 18, 12–26 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press (2007)Google Scholar
  9. 9.
    Jia, J.: Single image motion deblurring using transparency. In: CVPR (2007)Google Scholar
  10. 10.
    Levin, A.: Blind motion deblurring using image statistics. In: NIPS (2006)Google Scholar
  11. 11.
    Joshi, N., Szeliski, R., Kriegman, D.J.: Psf estimation using sharp edge prediction. In: CVPR (2008)Google Scholar
  12. 12.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: CVPR, pp. 1964–1971 (2009)Google Scholar
  13. 13.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)Google Scholar
  14. 14.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. In: SIGGRAPH (2007)Google Scholar
  15. 15.
    Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Trans. Graph. 29, 30:1–30:9 (2010)Google Scholar
  16. 16.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. In: SIGGRAPH, pp. 795–804 (2006)Google Scholar
  17. 17.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. In: SIGGRAPH (2007)Google Scholar
  18. 18.
    Raskar, R., Tubmlin, J., Mohan, A., Agrawal, A., Li, Y.: Computational photography. In: EUROGRAPHICS (2006)Google Scholar
  19. 19.
    Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: CVPR (2010)Google Scholar
  20. 20.
    Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera shake. In: ICCV, pp. 463–470 (2011)Google Scholar
  21. 21.
    Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: NIPS (2010)Google Scholar
  22. 22.
    Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Tai, Y., Tan, P., Brown, M.: Richardson-lucy deblurring for scenes under a projective motion path. PAMI (2011)Google Scholar
  24. 24.
    Tai, Y.W., Du, H., Brown, M.S., Lin, S.: Correction of spatially varying image and video motion blur using a hybrid camera. PAMI (2010)Google Scholar
  25. 25.
    Shan, Q., Xiong, W., Jia, J.: Rotational motion deblurring of a rigid object from a single image. In: ICCV (2007)Google Scholar
  26. 26.
    Bar, L., Sochen, N.A., Kiryati, N.: Semi-blind image restoration via mumford-shah regularization. IEEE Transactions on Image Processing 15, 483–493 (2006)CrossRefGoogle Scholar
  27. 27.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Progressive inter-scale and intra-scale non-blind image deconvolution. In: SIGGRAPH (2008)Google Scholar
  28. 28.
    Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions for single and dynamic MRFs. In: CVPR (2007)Google Scholar
  29. 29.
    Eckstein, J., Bertsekas, D.P.: On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. (1992)Google Scholar
  30. 30.
    Figueiredo, M.A., Bioucas-Dias, J.M., Afonso, M.V.: Fast frame-based image deconvolution using variable splitting and constrained optimization. In: SSP (2009)Google Scholar
  31. 31.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikos Komodakis
    • 1
  • Nikos Paragios
    • 2
  1. 1.Ecole des Ponts ParisTechFrance
  2. 2.Ecole Centrale de ParisFrance

Personalised recommendations