Robust Object Tracking Using Constellation Model with Superpixel

  • Weijun Wang
  • Ramakant Nevatia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)


Tracking objects under occlusion or non-rigid deformation poses a major problem: appearance variation of target makes existing bounding rectangle based representation vulnerable to background noise imported during adaptive appearance update. We address the object tracking problem by exploring superpixel based visual information around the target. Instead of representing each object with a single holistic appearance model, we propose to track each target with multiple related parts and model the tracking system as a Dynamic Bayesian Network(DBN). Based on visual features from superpixels, we propose a constellation appearance model with multiple parts which is adaptable to appearance variations. A particle-based approximate inference algorithm over the DBN is proposed for tracking. Experimental results show that the proposed algorithm performs favorably against existing object trackers especially during deformation and occlusion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV (2007)Google Scholar
  3. 3.
    Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. IJCV (2004)Google Scholar
  4. 4.
    Zhimin Fan, M.Y., Wu, Y.: Multiple collaborative kernel tracking. PAMI (2007)Google Scholar
  5. 5.
    Shi, J., Tomasi, C.: Good features to track. In: CVPR (1994)Google Scholar
  6. 6.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical report (1991)Google Scholar
  7. 7.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI (2003)Google Scholar
  8. 8.
    Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV (2008)Google Scholar
  9. 9.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)Google Scholar
  10. 10.
    Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)Google Scholar
  11. 11.
    Avidan, S.: Ensemble tracking. PAMI (2007)Google Scholar
  12. 12.
    Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)Google Scholar
  13. 13.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: Bootstrapping binary classifiers by structural constraints. In: CVPR (2010)Google Scholar
  14. 14.
    Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: CVPR (2007)Google Scholar
  15. 15.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: CVPR (2010)Google Scholar
  16. 16.
    Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple Hypothesis Video Segmentation from Superpixel Flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal video segmentation with long-range motion cues. In: CVPR (2011)Google Scholar
  19. 19.
    Fragkiadaki, K., Shi, J.: Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In: CVPR (2011)Google Scholar
  20. 20.
    Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV (2011)Google Scholar
  21. 21.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC Superpixels. Technical report (2010)Google Scholar
  22. 22.
    Collins, R.: Mean-shift blob tracking through scale space. In: CVPR (2003)Google Scholar
  23. 23.
    Nummiaro, K., Koller-Meier, E., Gool, L.V.: An adaptive color-based particle filter. Image and Vision Computing (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weijun Wang
    • 1
  • Ramakant Nevatia
    • 1
  1. 1.Institute for Robotics and Intelligent SystemsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations