Advertisement

Multiple Target Tracking Using Frame Triplets

  • Asad A. Butt
  • Robert T. Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7726)

Abstract

This paper addresses the problem of multi-frame, multi-target video tracking. Unlike recent approaches that use only unary and pairwise costs, we propose a solution based on three-frame tracklets to leverage constant-velocity motion constraints while keeping computation time low. Tracklets are solved for within a sliding window of frame triplets, each having a two frame overlap with neighboring triplets. Any inconsistencies in these local tracklet solutions are resolved by considering a larger temporal window, and the remaining tracklets are then merged globally using a min-cost network flow formulation. The result is a set of high-quality trajectories capable of spanning gaps caused by missed detections and long-term occlusions. Our experimental results show good performance in complex scenes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008)Google Scholar
  2. 2.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). IEEE Press (2008)Google Scholar
  3. 3.
    Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 54–72 (2001)CrossRefGoogle Scholar
  4. 4.
    Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 951–958 (2006)Google Scholar
  5. 5.
    Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)Google Scholar
  6. 6.
    Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  7. 7.
    Shafique, K., Shah, M.: A noniterative greedy algorithm for multiframe point correspondence. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 51–65 (2005)CrossRefGoogle Scholar
  8. 8.
    Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1273–1280 (2011)Google Scholar
  9. 9.
    Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Sys. Artech House, Norwood (1999)Google Scholar
  10. 10.
    Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1805–1819 (2005)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Huang, C., Nevatia, R.: Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2953–2960 (2009)Google Scholar
  12. 12.
    Yang, B., Huang, C., Nevatia, R.: Learning affinities and dependencies for multi-target tracking using a crf model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1233–1240 (2011)Google Scholar
  13. 13.
    Song, B., Jeng, T., Staudt, E., Roy-Chowdhury, A.: A Stochastic Graph Evolution Framework for Robust Multi-Target Tracking (2010)Google Scholar
  14. 14.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1806–1819 (2011)CrossRefGoogle Scholar
  15. 15.
    Collins, R.: Multitarget data association with higher-order motion models. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012. IEEE Press (2012)Google Scholar
  16. 16.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference on Computer Vision (2005)Google Scholar
  17. 17.
    Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: Proceedings Neural Information Processing Systems. Springer (2009)Google Scholar
  18. 18.
    Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algorithms 22, 1–29 (1992)CrossRefGoogle Scholar
  19. 19.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1:1–1:10 (2008)Google Scholar
  20. 20.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Asad A. Butt
    • 1
  • Robert T. Collins
    • 1
  1. 1.Dept. of Computer Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations