Complex Systems of Mindful Entities: On Intention Recognition and Commitment

  • Luís Moniz Pereira
  • The Anh Han
  • Francisco C. Santos
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 8)


The mechanisms of emergence and evolution of cooperation in populations of abstract individuals with diverse behavioural strategies in co-presence have been undergoing mathematical study via Evolutionary Game Theory, inspired in part on Evolutionary Psychology. Their systematic study resorts as well to implementation and simulation techniques, thus enabling the study of aforesaid mechanisms under a variety of conditions, parameters, and alternative virtual games. The theoretical and experimental results have continually been surprising, rewarding, and promising. Recently, in our own work we have initiated the introduction, in such groups of individuals, of cognitive abilities inspired on techniques and theories of Artificial Intelligence, namely those pertaining to both Intention Recognition and to Commitment (separately and jointly), encompassing errors in decision-making and communication noise. As a result, both the emergence and stability of cooperation become reinforced comparatively to the absence of such cognitive abilities. This holds separately for Intention Recognition and for Commitment, and even more when they are engaged jointly. The present paper aims to sensitize the reader to these Evolutionary Game Theory based studies and issues, which are accruing in importance for the modelling of minds with machines, with impact on our understanding of the evolution of mutual tolerance and cooperation. In doing so, it also provides a coherent bird’s-eye view of our own varied recent work, whose more technical details and results are spread throughout a number of well recognized publishing venues, and to which we refer the reader for a fuller support of our claims where felt necessary.


Bayesian Network Punishment Cost Social Dilemma Payoff Matrix Evolutionary Game Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This article is in great part a summary and cursory overview of the authors’ detailed joint work mentioned in the publications. TAH acknowledges support from FCT-Portugal (grant SFRH/BD/62373/2009) and the FWO Vlaanderen (Postdoctoral fellowship). FCS acknowledges support from FCT-Portugal (PTDC/FIS/101248/2008, PTDC/MAT/122897/2010 and INESC-ID’s PEst-OE/EEI/LA0021/2011). We thank all three reviewers for their very helpful indications.


  1. 1.
    Ampatzis, C., Tuci, E., Trianni, V., Dorigo, M.: Evolution of signaling in a multi-robot system: categorization and communication. Adapt. Behav. 16(1), 5–26 (2008)CrossRefGoogle Scholar
  2. 2.
    Armentano, M.G., Amandi, A.: Goal recognition with variable-order markov models. In: Proceedings of the 21st International Joint Conference on, Artificial Intelligence, pp. 1635–1640 (2009)Google Scholar
  3. 3.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984). ISBN 0-465-02122-2Google Scholar
  4. 4.
    Axelrod, R.: The evolution of cooperation. Science 211, 1390–1396 (1981)CrossRefGoogle Scholar
  5. 5.
    Back, Istvan, Flache, Andreas: The adaptive rationality of interpersonal commitment. Ration. Soc. 20(1), 65–83 (2008)CrossRefGoogle Scholar
  6. 6.
    Blaylock, N., Allen, J.: Statistical goal parameter recognition. In: Zilberstein S., Koehler J., Koenig S. (eds.) Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS’04), pp. 297–304. AAAI (2004)Google Scholar
  7. 7.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, USA (1999)Google Scholar
  8. 8.
    Bratman, M.E.: Intention, Plans, and Practical Reason. The David Hume Series, CSLI (1987)Google Scholar
  9. 9.
    Bratman, M.E.: Faces of Intention: Selected Essays on Intention and Agency. Cambridge University Press (1999)Google Scholar
  10. 10.
    Bui, H., Venkatesh, S., West, G.: Policy recognition in the abstract hidden markov model. J. Artif. Intell. Res. 17, 451–499 (2002)Google Scholar
  11. 11.
    Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model (Wiley Series in Agent Technology). Wiley (2010)Google Scholar
  12. 12.
    Charniak, E., Goldman, R.P.: A Bayesian model of plan recognition. Artif. Intell. 64(1), 53–79 (1993)CrossRefGoogle Scholar
  13. 13.
    Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of the 8th International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’09), pp. 937–944 (2009)Google Scholar
  14. 14.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2–3), 213–261 (1990)CrossRefGoogle Scholar
  15. 15.
    de Vos, H., Smaniotto, R.: Reciprocal altruism under conditions of partner selection. Ration. Soc. 13(2), 139–183 (2001)CrossRefGoogle Scholar
  16. 16.
    Deacon, T.W.: The hierarchic logic of emergence: Untangling the interdependence of evolution and self-organization. In: Weber, H.W., Depew, D.J. (eds.) Evolution and Learning: The Baldwin Effect Reconsidered. MIT Press, Cambridge, MA (2003)Google Scholar
  17. 17.
    Dreber, A., Rand, D.G., Fudenberg, D., Nowak, M.A.: Winners don’t punish. Nature 452(7185), 348–351 (2008)CrossRefGoogle Scholar
  18. 18.
    Fehr, E., Gachter, S.: Altruistic punishment in humans. Nature 415, 137–140 (2002)CrossRefGoogle Scholar
  19. 19.
    Frank, R.H.: Passions Within Reason: The Strategic Role of the Emotions. W. W. Norton and Company, New York (1988)Google Scholar
  20. 20.
    Frank, Robert H.: Cooperation through emotional commitment. In: Nesse, R.M. (ed.) Evolution and the Capacity for Commitment, pp. 55–76. Russell Sage, New York (2001)Google Scholar
  21. 21.
    Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree grammars. Artif. Intell. 173(2009), 1101–1132 (2009)CrossRefGoogle Scholar
  22. 22.
    Gintis, H.: Beyond selfishness in modeling human behavior. In: Nesse, Randolf M. (ed.) Evolution and the Capacity for Commitment. Russell Sage, New York (2001)Google Scholar
  23. 23.
    Goodenough, O.R.: Law and the biology of commitment. In: Nesse, R.M. (ed.) Evolution and the Capacity for Commitment, pp. 262–291. Russell Sage, New York (2001)Google Scholar
  24. 24.
    Szabó, G., Tőke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E 58, 69–73 (1998)Google Scholar
  25. 25.
    Gut, A.: An Intermediate Course in Probability, 2nd edn. Springer Publishing Company, Incorporated, New York (2009)Google Scholar
  26. 26.
    Gutierrez, A., Campo, A., Santos, F.C., Monasterio-Huelin, F., Dorigo, M.: Social odometry: imitation based odometry in collective robotics. I. J. Adv. Robot. Syst. 2(6), 129–136 (2009)Google Scholar
  27. 27.
    Han, T.A.: Intention recognition, commitments and their roles in the evolution of cooperation. Ph.D. thesis, Department of Informatics, Faculty of Sciences and Technology, Universidade Nova de Lisboa (May 2012)Google Scholar
  28. 28.
    Han, T.A., Pereira, L.M.: Context-dependent incremental intention recognition through Bayesian network model construction. In: Nicholson, A. (ed.) Proceedings of the Eighth UAI Bayesian Modeling Applications Workshop (UAI-AW 2011), vol. 818, pp. 50–58. CEUR Workshop Proceedings (2011)Google Scholar
  29. 29.
    Han, T.A., Pereira, L.M.: Intention-based decision making via intention recognition and its applications. In: Guesgen, H., Marsland, S. (eds.) Human Behavior Recognition Technologies: Intelligent Applications for Monitoring and Security. IGI Global, (forthcoming) (2013)Google Scholar
  30. 30.
    Han, T.A., Pereira, L.M., Santos, F.C.: Intention recognition promotes the emergence of cooperation. Adapt. Behav. 19(3), 264–279 (2011)Google Scholar
  31. 31.
    Han, T.A., Pereira, L.M., Santos, F.C.: The role of intention recognition in the evolution of cooperative behavior. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’2011), pp. 1684–1689. AAAI (2011)Google Scholar
  32. 32.
    Han, T.A., Pereira, L.M., Santos, F.C.: Corpus-based intention recognition in cooperation dilemmas. Artif. Life j. 18(4), 365–383 (2012)CrossRefGoogle Scholar
  33. 33.
    Han, T.A., Pereira, L.M., Santos, F.C.: The emergence of commitments and cooperation. In: Proceedings of the 11th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’2012), pp. 559–566. ACM (2012)Google Scholar
  34. 34.
    Han, T.A., Pereira, L.M., Santos, F.C.: Intention recognition, commitment, and the evolution of cooperation. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE Press, June 2012Google Scholar
  35. 35.
    Han, T.A., Saptawijaya, A., Pereira, L.M.: Moral reasoning under uncertainty. In: Proceedings of the 18th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-18), pp. 212–227. Springer LNAI 7180 (2012)Google Scholar
  36. 36.
    Han, T.A., Traulsen, A., Gokhale, C.S.: On equilibrium properties of evolutionary multiplayer games with random payoff matrices. Theor. Popul. Biol. 81(4), 264–272 (June 2012)CrossRefGoogle Scholar
  37. 37.
    Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)CrossRefGoogle Scholar
  38. 38.
    Harrenstein, P., Brandt, F., Fischer, F.: Commitment and extortion. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’07, ACM, New York, USA (2007)Google Scholar
  39. 39.
    Haselton, M.G., Buss, D.M.: Error management theory: a new perspective on biases in cross-sex mind reading. J. Pers. Soc. Psychol. 78(1), 81–91 (2001)Google Scholar
  40. 40.
    Hauert, C., Traulsen, A., Brandt, H., Nowak, M.A., Sigmund, K.: Via freedom to coercion: the emergence of costly punishment. Science 316, 1905–1907 (2007)CrossRefGoogle Scholar
  41. 41.
    Heinze, C.: Modeling intention recognition for intelligent agent systems. Ph.D. thesis, The University of Melbourne, Australia (2003)Google Scholar
  42. 42.
    Herrmann, Benedikt, Thöni, Christian, Gächter, Simon: Antisocial Punishment Across Societies. Science 319(5868), 1362–1367 (2008)Google Scholar
  43. 43.
    Hirshleifer, J.: Game-theoretic interpretations of commitment. In: Nesse, Randolf M. (ed.) Evolution and the Capacity for Commitment, pp. 77–93. Russell Sage, New York (2001)Google Scholar
  44. 44.
    Hirshleiffer, J.: There are many evolutionary pathways to cooperation. J. Bioecon. 1(1), 73–93 (1999)CrossRefGoogle Scholar
  45. 45.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press (1998)Google Scholar
  46. 46.
    Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J.C., Rizzolatti, G.: Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. PLoS Biology 3(3), e79 (2005)CrossRefGoogle Scholar
  47. 47.
    Imhof, L.A., Fudenberg, D., Nowak, M.A.: Evolutionary cycles of cooperation and defection. Proc. Nat. Acad. Sci. U S A 102, 10797–10800 (2005)Google Scholar
  48. 48.
    Imhof, L.A., Fudenberg, D., Nowak, M.A.: Tit-for-tat or win-stay, lose-shift? J. Theor. Biol. 247(3), 574–580 (2007)CrossRefGoogle Scholar
  49. 49.
    Janssen, M.: Evolution of cooperation in a one-shot prisoner?s dilemma based on recognition of trustworthy and untrustworthy agents. J. Econ. Behav. Organ. 65(3–4), 458–471 (2008)CrossRefGoogle Scholar
  50. 50.
    Johnson, D.D.P., Fowler, J.H.: The evolution of overconfidence. Nature 477(7364), 317–320 (2011)Google Scholar
  51. 51.
    Kautz, H., Allen, J.F.: Generalized plan recognition. In: Proceedings of the Conference of the American Association of Artificial Intelligence (AAAI’1986), pp. 32–38. AAAI (1986)Google Scholar
  52. 52.
    Kraus, S.: Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1–2), 79–98 (1997)CrossRefGoogle Scholar
  53. 53.
    Leeds, Brett A.: Alliance reliability in times of war: explaining state decisions to violate treaties. Int. Organ. 57(04), 801–827 (2003)CrossRefGoogle Scholar
  54. 54.
    Lindgren, K., Nordahl, M.G.: Evolutionary dynamics of spatial games. Physica D: Nonlinear Phenom. 75(1–3), 292–309 (1994)CrossRefGoogle Scholar
  55. 55.
    Lockhart, Charles: Flexibility and commitment in international conflicts. Int. Stud. Quart. 22(4), 545–568 (1978)CrossRefGoogle Scholar
  56. 56.
    Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proc. Nat. Acad. Sci. U S A 99, 7229–7236 (2002)CrossRefGoogle Scholar
  57. 57.
    Masuda, Naoki, Ohtsuki, Hisashi: A theoretical analysis of temporal difference learning in the iterated prisoner’s dilemma game. Bull. Math. Biol. 71, 1818–1850 (2009)CrossRefGoogle Scholar
  58. 58.
    Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  59. 59.
    Milinski, M., Semmann, D., Krambeck, H.J., Marotzke, J.: Stabilizing the Earth’s climate is not a losing game: supporting evidence from public goods experiments. Proc. Nat. Acad. Sci. U S A 103, 3994–3998 (2006)Google Scholar
  60. 60.
    Miller, Geoffrey F., Todd, Peter M.: Mate choice turns cognitive. Trends Cogn. Sci. 2(5), 190–198 (1998)CrossRefGoogle Scholar
  61. 61.
    Nakahara, K., Miyashita, Y.: Understanding intentions: through the looking glass. Science 308(5722), 644–645 (2005)CrossRefGoogle Scholar
  62. 62.
    Nesse, R.M.: Evolution and the Capacity for Commitment. Russell Sage Foundation series on trust, Russell Sage (2001)Google Scholar
  63. 63.
    Nesse, Randolf M.: Natural selection and the capacity for subjective commitment. In: Nesse, Randolf M. (ed.) Evolution and the Capacity for Commitment, pp. 1–44. Russell Sage, New York (2001)Google Scholar
  64. 64.
    Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge, MA (2006)Google Scholar
  65. 65.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560 (2006). doi: 10.1126/science.1133755 CrossRefGoogle Scholar
  66. 66.
    Nowak, M.A., Sigmund, K.: Tit for tat in heterogeneous populations. Nature 355, 250–253 (1992)CrossRefGoogle Scholar
  67. 67.
    Nowak, M.A., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in prisoner’s dilemma. Nature 364, 56–58 (1993)CrossRefGoogle Scholar
  68. 68.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437,1291–1298 (2005)Google Scholar
  69. 69.
    Ohtsuki, H., Iwasa, Y.: The leading eight: social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol. 239(4), 435–444 (2006)CrossRefGoogle Scholar
  70. 70.
    Ohtsuki, H., Iwasa, Y., Nowak, M.A.: Indirect reciprocity provides only a narrow margin of efficiency for costly punishment. Nature 457(7601), 79–82 (2009)CrossRefGoogle Scholar
  71. 71.
    Oyama, S.: Evolution’s Eye: A Systems View of the Biology-Culture Divide. Duke University Press, Durham (2000)Google Scholar
  72. 72.
    Pacheco, J.M., Santos, F.C., Chalub, F.A.C.C.: Stern-judging: a simple, successful norm which promotes cooperation under indirect reciprocity. PLoS Comput. Biol. 2(12), e178 (2006)CrossRefGoogle Scholar
  73. 73.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)Google Scholar
  74. 74.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (2000)Google Scholar
  75. 75.
    Pereira, L.M., Han, T.A.: Evolution prospection. In: Proceedings of International Symposium on Intelligent Decision Technologies (KES-IDT’09), pp. 51–63. Springer Studies in Computational Intelligence 199, 2009Google Scholar
  76. 76.
    Pereira, L.M., Han, T.A.: Evolution prospection in decision making. Intell. Decis. Technol. 3(3), 157–171 (2009)Google Scholar
  77. 77.
    Pereira, L.M., Han, T.A.: Intention recognition via causal Bayes networks plus plan generation. In: Progress in Artificial Intelligence, Proceedings of 14th Portuguese International Conference on Artificial Intelligence (EPIA’09), pages 138–149. Springer LNAI 5816, Oct 2009Google Scholar
  78. 78.
    Pereira, L.M., Han, T.A.: Intention recognition with evolution prospection and causal Bayesian networks. In: Computational Intelligence for Engineering Systems 3: Emergent Applications, pp. 1–33. Springer (2011)Google Scholar
  79. 79.
    Nichola, R., Aitken, D.: Uncertainty, rationality and cooperation in the context of climate change. Climatic Change 108(1), 47–55 (2011)Google Scholar
  80. 80.
    Rand, D.G., Nowak, M.A.: The evolution of antisocial punishment in optional public goods games. Nature Commun. 2:434 (2011)Google Scholar
  81. 81.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  82. 82.
    Robson, A.: Efficiency in evolutionary games: Darwin, Nash, and the secret handshake. J. Theor. Biol. 144(3), 379–396 (1990)CrossRefGoogle Scholar
  83. 83.
    Roy, O.: Intentions and interactive transformations of decision problems. Synthese 169(2), 335–349 (2009)Google Scholar
  84. 84.
    Roy, O.: Thinking before acting: intentions, logic, rational choice. Ph.D. thesis, ILLC Dissertation Series DS-2008-03, Amsterdam (2009)Google Scholar
  85. 85.
    Ruse, M.: Morality and commitment. In: Nesse, Randolf M. (ed.) Evolution and the Capacity for Commitment, pp. 221–236. Russell Sage, New York (2001)Google Scholar
  86. 86.
    Santos, F.C., Pacheco, J.M.: Risk of collective failure provides an escape from the tragedy of the commons. Proc. Nat. Acad. Sci. U S A 108(26), 10421–10425 (2011)CrossRefGoogle Scholar
  87. 87.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Nat. Acad. Sci. U S A 103, 3490–3494 (2006)CrossRefGoogle Scholar
  88. 88.
    Santos, F.C., Pacheco, J.M., Skyrms, B.: Co-evolution of pre-play signaling and cooperation. J. Theor. Biol. 274(1), 30–35 (2011)CrossRefGoogle Scholar
  89. 89.
    Santos, F.C., Pinheiro, F.L., Lenaerts, T., Pacheco, J.M.: The role of diversity in the evolution of cooperation. J. Theor. Biol. 299, 88–96 (2012)CrossRefGoogle Scholar
  90. 90.
    Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 214–216 (2008)Google Scholar
  91. 91.
    Schelling, T.C.: The Strategy of Conflict. Oxford University Press, London (1990)Google Scholar
  92. 92.
    Searle, J.R.: The Construction of Social Reality. The Free Press, New York (1995)Google Scholar
  93. 93.
    Searle, J.R.: Making the Social World: The Structure of Human Civilization. Oxford University Press (2010)Google Scholar
  94. 94.
    Sigmund, K.: The Calculus of Selfishness. Princeton University Press (2010)Google Scholar
  95. 95.
    Sigmund, K., De Silva, H., Traulsen, A., Hauert, C.: Social learning promotes institutions for governing the commons. Nature 466, 7308 (2010)CrossRefGoogle Scholar
  96. 96.
    Skyrms, B.: Evolution of the Social Contract. Cambridge University Press (1996)Google Scholar
  97. 97.
    Skyrms, B.: The Stag Hunt and the Evolution of Social Structure. Cambridge University Press (2003)Google Scholar
  98. 98.
    Skyrms, B.: Signals: Evolution, Learning, and Information. Oxford University Press (2010)Google Scholar
  99. 99.
    Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216 (2007)Google Scholar
  100. 100.
    Tahboub, K.A.: Intelligent human-machine interaction based on dynamic Bayesian networks probabilistic intention recognition. J. Intell. Robot. Syst. 45, 31–52 (January 2006)Google Scholar
  101. 101.
    Tomasello, M.: Origins of Human Communication. MIT Press, Cambridge (2008)Google Scholar
  102. 102.
    Traulsen, A., Nowak, M.A.: Evolution of cooperation by multilevel selection. Proc. Nat. Acad. Sci. U S A 103(29), 10952 (2006)CrossRefGoogle Scholar
  103. 103.
    Traulsen, A., Nowak, M.A., Pacheco, J.M.: Stochastic dynamics of invasion and fixation. Phys. Rev. E 74, 11909 (2006)CrossRefGoogle Scholar
  104. 104.
    Trivers, R.: Deceit and Self-Deception: Fooling Yourself the Better to Fool Others. Penguin Books, Limited (2011)Google Scholar
  105. 105.
    Trivers, R.L.: The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)CrossRefGoogle Scholar
  106. 106.
    van Hees, M., Roy, O.: Intentions and plans in decision and game theory. In: Verbeek, B. (ed.) Reasons and Intentions, pp. 207–226. Ashgate Publishers, Aldershot (2008)Google Scholar
  107. 107.
    Van Segbroeck, S., de Jong, S., Nowé, A., Santos, F.C., Lenaerts, T.: Learning to coordinate in complex networks. Adapt. Behav. 18, 416–427 (2010)CrossRefGoogle Scholar
  108. 108.
    Van Segbroeck, S., Pacheco, J.M., Lenaerts, T., Santos, F.C.: Emergence of fairness in repeated group interactions. Phys. Rev. Lett. 108, 158104 (2012)CrossRefGoogle Scholar
  109. 109.
    Vukov, J., Santos, F.C., Pacheco, J.M.: Incipient cognition solves the spatial reciprocity conundrum of cooperation. PLoS ONE 6(3), e17939 (March 2011)CrossRefGoogle Scholar
  110. 110.
    Wang, S., Szalay, M.S., Zhang, C., Csermely, P.: Learning and innovative elements of strategy adoption rules expand cooperative network topologies. PLoS ONE 3(4), e1917, 04 2008Google Scholar
  111. 111.
    West, S.A., Griffin, A.A., Gardner, A.: Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007)CrossRefGoogle Scholar
  112. 112.
    Winikoff, M.: Implementing commitment-based interactions. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, pp. 868–875. ACM, New York, USA (2007)Google Scholar
  113. 113.
    Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. J. Logic Comput. 9, 403–417 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luís Moniz Pereira
    • 1
  • The Anh Han
    • 1
    • 2
  • Francisco C. Santos
    • 3
  1. 1.Centro de Inteligência Artificial (CENTRIA), Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.AI-labVrije Universiteit BrusselBrusselsBelgium
  3. 3.INESC-ID, Instituto Superior Técnico and ATP-group, Instituto para a Investigação Interdisciplinar Universidade Técnica de LisboaPorto Salvo Portugal

Personalised recommendations