Advertisement

Galileo’s Discovery of the Moons Orbiting Jupiter Based on Abductive Inference Strategies

Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 8)

Abstract

The objective of this study is to understand the scientific inferential processes of Galileo’s discovery of Jupiter’s moons. Abductive reasoning has played very important roles in producing creative leaps and breakthrough for scientific discovery in history of science. This article presents a scientific procedure that involves abductive inference in general. And we propose a noble and refined model for abduction inference and show its validity by applying to the inferential process of “Galileo’s discovery of the moons of Jupiter”, with historically considered evidence. It makes three broad macro perspectives; rather than only hypothetico-deductive method, (1) “fixed stars hypothesis suspected”, (2) Moon hypothesis can be suggested and selected by abductive strategies, (3) Moon hypothesis expansion.

Keywords

Galileo Jupiter moons Abductive inference Heliocentric hypothesis 

References

  1. 1.
    Aliseda, A.: Abductive Reasoning: Logical Investigations into Discovery and Explanation. Springer, Dordrecht (2006)Google Scholar
  2. 2.
    Archer, R., Bhaskar, R., Collier, A., Lawson, T., Norrie, A.: Critical Realism: Essential Readings. In: Archer, M., Bhaskar, R., Collier, A., Lawson, T., Norrie, A. (eds.) Routledge, London (1998)Google Scholar
  3. 3.
    Galilei, G.: The sidereal messenger. In: Shapley, H., Rapport, S., Wright, H. (eds.) (1954), A Treasury of Science. Harper & Brothers, New York (1610)Google Scholar
  4. 4.
    Hanson, N.R.: Patterns of Discovery. Cambridge University Press, London (1972)Google Scholar
  5. 5.
    Hempel, C.: Philosophy of Natural Science. Prentice-Hall, Upper Saddle River (1966)Google Scholar
  6. 6.
    Hoskin, M.: The Cambridge Illustrated History of Astronomy. Cambridge University Press, Cambridge (1997)Google Scholar
  7. 7.
    Josephson, J.R., Josephson, S.G.: Abductive Inference: Computation, Philosophy, Technology. Cambridge University Press, Cambridge (1996)Google Scholar
  8. 8.
    Kapitan, T.: Peirce and the autonomy of abductive reasoning. Erkenntnis 37, pp. 126 (1992)Google Scholar
  9. 9.
    Kapitan, T.: Peirce and structure of abductive inference. In: Houser, N., Roberts, D.D., Evra, J.V. (eds.) Studies in the Logic of Charles Sanders Peirce, pp. 477–496. Indiana University Press, Bloomington and Indianapolis (1997)Google Scholar
  10. 10.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. University of Chicago Press, Chicago (1970)Google Scholar
  11. 11.
    Lakatos, I.: Changes in the problem of inductive logic. In: I. Lakatos (ed.) Inductive Logic, pp. 376–377. North-Holland Publishing, Amsterdam (1968)Google Scholar
  12. 12.
    Lakatos, I.: Falsification and the methodology of scientific research programmes. In: Lakatos, I., Musgrave, A. (eds.) Criticism and the Growth of Knowledge. Cambridge University Press, New York (1970)Google Scholar
  13. 13.
    Lawson, A.: What does Galileos discovery of Jupiter’s moons tell us about the process of scientific discovery? Sci. Educ. 11, 1–24 (2002)CrossRefGoogle Scholar
  14. 14.
    Lawson, A.E.: Basic Inferences of Scientific Reasoning, Argumentation, and Discovery. Sci. Educ. 94, 336–364 (2010)Google Scholar
  15. 15.
    Losee, J.: A Historical Introduction to the Philosophy of Science, 4th edn. Oxford University Press Inc, New York (2001)Google Scholar
  16. 16.
    Magnani, L.: Model-based creative abduction. In: Magnani, L., Nersessian, N.J., Thagard, P. (eds.) Model-Based Reasoning in Scientific Discovery, pp. 219–238. Kluwer Academic/Plenum Publishers, New York (1999)Google Scholar
  17. 17.
    Magnani, L.: Epistémolgie de I ’ invention scientifique. Communication and Cognition. 21, 273–291 (1988)Google Scholar
  18. 18.
    Magnani, L.: Abductive reasoning: Philosophical and educational perspectives in medicine. In: Evans D.A., Patel V.L. (eds.) Advanced Models of Cognition in Medical Training and Practice, pp. 21–41. Springer, Berlin (1992)Google Scholar
  19. 19.
    Magnani, L.: Abduction, Reason, and Science Processes of Discovery and Explanation. Kluwer Academic/Plenum Publishers, New York (2001)Google Scholar
  20. 20.
    McLaughlin, R.: Invention and induction: Laudan Simon, and the logic of discovery. Philos. Sci. 49, 209 (1982)CrossRefGoogle Scholar
  21. 21.
    Niiniluoto, I.: Defending abduction. Philos. Sci. (proceedings) 66, S436–S451 (1999)Google Scholar
  22. 22.
    Oh, J.-Y.: Defending problems with Peirce’s concept of abduction. J. Korean Philos. Soc. 113, 215–255 (2010)Google Scholar
  23. 23.
    Oh, J.-Y.: Understanding scientific inference in the natural sciences based on abductive inference strategies. In: Magnani L., Li P. (eds.) Philosophy and cognitive science: Western & Eastern studies (Sapere 2), pp. 221–237. Springer, New York (2012)Google Scholar
  24. 24.
    Paavola, S.: Abduction as a logic and methodology of discovery: the importance of strategies. Found. Sci. 9, 267–283 (2004)CrossRefGoogle Scholar
  25. 25.
    Paavola, S.: Peircean abduction: Instinct or inference? Semiotica 153(1/4), 131–154 (2005)Google Scholar
  26. 26.
    Peng, Y., Reggia, J.A.: Abductive Inference Models for Diagnostic Problem-Solving. Springer, New York (1990)CrossRefGoogle Scholar
  27. 27.
    Pera, M.: Inductive method and scientific discovery. In: Grmck, M.D., Cohen, R.S., Cimino, G. (eds.) On Scientific Discovery. D.Reidal Pub. Co, Dordrecht (1981)Google Scholar
  28. 28.
    Ramoni, M., Stefannelli, M., Magnani, L., Barosi, G.: An epistemological framework for medical knowledge-base systems. IEEE Trans. Syst. Man Cybern. 22(6), 1361–1375 (1992)CrossRefGoogle Scholar
  29. 29.
    Rescher, N.: Peirces Philosophy of Science. University of Notre Dame Press, Indiana (1978)Google Scholar
  30. 30.
    Salmon, W.C.: The foundations of scientific inference. University of Pittsburgh Press, Pittsburgh (1967) Google Scholar
  31. 31.
    Salmon, M.: Introduction to logic and critical thinking (3rd ed.). Harcourt Brace, Fort Worth, TX (1995)Google Scholar
  32. 32.
    Thagard, P.: The best explanation: criteria for theory choice. J. Philos. 75, 76–92 (1978)CrossRefGoogle Scholar
  33. 33.
    Thagard, P.: Computational Philosophy of Science. MIT Press, Cambridge (1988)Google Scholar
  34. 34.
    Trigg, G.I. (ed.): Encyclopedia of Applied Physics, vol. 2. VCH Publishers Inc, New York (1991)Google Scholar
  35. 35.
    Wallace, W.A.: Galileos Logic of Discovery and Proof: The Background, Content, and Use of His Appropriated Treatises on Aristotles Posterior Analytics. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  36. 36.
    Westfall, R.S.: The Construction of Modern Science. Wiley, New York (1971)Google Scholar
  37. 37.
    Whewell, W.: The Philosophy of the Inductive Sciences. John W. Parker, London (1847)Google Scholar
  38. 38.
    White, M.: Galileo Antichrist: A Biography. Weidenfeld & Nicolson, London (2007)Google Scholar
  39. 39.
    Wuisman, J.J.J.M.: The logic of scientific discovery in critical realist social scientific research. J. Crit. Realism 4(2), 366–394 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Hanyang UniversitySeoulRepublic of Korea
  2. 2.Science StudiesPusan National UniversityPusanRepublic of Korea

Personalised recommendations